Диаметр окружности, описанной около прямоугольника треугольника равен гипотенузе.Значит гипотенуза АВ=2R=22. На рисунке изображена окружность, вписанная в прямоугольный треугольник. По свойству касательной, проведенной к окружности из одной точки, отрезки касательных равны. Значит АК=AN=х, BN=22-x=BM Катет АВ=х+r=x+3 катет ВС=r+22-x=3+22-x=25-x По теореме Пифагора АВ²+ВС²=АС² (х+3)²+(25-х)²=22² или х²+6х+9+625-50х+х²=484, 2х²-44х+150=0, х²-22х+75=0, D=b²-4ac=(-22)²-4·75=484-300=184=(2√46)²
х₁=(22-2√46)/2 или х₂=(22+2√46)/2
х₁=11-√46 или х₂=11+√46 Тогда при х₁=11-√46 катет АВ=3+11-√46=14-√46, а катет ВС=3+22-(11-√46)=14+√46 или наоборот, при х₂=11+√46 кате АВ=3+11+√46=14+√46, а катет ВС=3+22-(11+√46)=14-√46. Площадь прямоугольного треугольника равна половине произведения катетов: S=1/2 (11-√46)(11+√46)=(формула a²-b²)=1/2(11²-46)=(121-46)/2=75/5
P(DKC) = CD + CK + DK P(DKE) = DE + KE + DK как видно, и в том, и в другом периметре фигурирует сторона DK, а CK = KE = DK. Найдем сторону DK. Диагональ СЕ делит прямоугольник на два треугольника. Периметр треугольника CDE = периметру треугольника CEF = половине периметра прямоугольника CDEF = 28/2 = 14 cм. В свою очередь, периметр CDE равен также сумме периметров DKC и DKE минус 4DK, т.е 14 = 16 + 18 - 4DK 4DK = 16 + 18 - 14 DK = 5 см Диагонали, при пересечении друг с другом, делятся пополам и образуют равнобедренные треугольники, значит DK = CK = КЕ = КF = 5 см. Теперь находим стороны прямоугольника. DС = ЕF = 16 - 5 - 5 = 6 см DE = CF = 18 - 5 - 5 = 8 см Проверка: Р(CDEF) = (6 + 8) * 2 = 28 см
Решение: АС=АН+НС 1)Рассмотрим треугольник АВН, он прямоугольный, по определению высоты Катет противолежащий углы=равен произведению гипотенузы на синус этого угла, то есть Используя таблицу Брадиса найдем значение угла и получим, что угол ВАС=37 градусов 2) Рассматриваем треугольника АВС угол АСВ=180-угол ВАС-угол СВА=180-37-90=53градуса 3)рассмотрим треугольник ВНС Катет противолежащий углу равен произведению другого катета на тангенс этого угла, то есть 4)AC=AH+HC=8+4,5=12,5 ответ: АС=12,5
На рисунке изображена окружность, вписанная в прямоугольный треугольник.
По свойству касательной, проведенной к окружности из одной точки, отрезки касательных равны.
Значит АК=AN=х, BN=22-x=BM
Катет АВ=х+r=x+3
катет ВС=r+22-x=3+22-x=25-x
По теореме Пифагора АВ²+ВС²=АС²
(х+3)²+(25-х)²=22²
или
х²+6х+9+625-50х+х²=484,
2х²-44х+150=0,
х²-22х+75=0,
D=b²-4ac=(-22)²-4·75=484-300=184=(2√46)²
х₁=(22-2√46)/2 или х₂=(22+2√46)/2
х₁=11-√46 или х₂=11+√46
Тогда при х₁=11-√46 катет АВ=3+11-√46=14-√46,
а катет ВС=3+22-(11-√46)=14+√46
или наоборот, при х₂=11+√46 кате АВ=3+11+√46=14+√46, а катет ВС=3+22-(11+√46)=14-√46.
Площадь прямоугольного треугольника равна половине произведения катетов:
S=1/2 (11-√46)(11+√46)=(формула a²-b²)=1/2(11²-46)=(121-46)/2=75/5