М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Anonim2118
Anonim2118
06.01.2021 16:06 •  Алгебра

Решите неравенство:
(3x-2)(x+3)≥2x2+12 (2б)

👇
Ответ:
konstantunzayac
konstantunzayac
06.01.2021

ответ и решение:...............


Решите неравенство: (3x-2)(x+3)≥2x2+12 (2б)
4,4(32 оценок)
Открыть все ответы
Ответ:
Solncelunatik
Solncelunatik
06.01.2021
1)  скорее всего в задании опечатка:
sin52'cos22'-cos52'sin22'=sin(52-22)=sin30=0.5

2)Преобразуйте sin4a-sin2a в произведение,
по формуле разности синусов:
2cos\frac{4 \alpha +2 \alpha }{2}sin\frac{4 \alpha -2 \alpha }{2}=2cos3α*sinα

3)Установите соответствие между тригонометрическими функциями (А-В) и их числовыми значениями(1-4), если sina=3/5 и п/2п
A.cosa 1) (-1)*1/3
Б.ctga 2)(-24/25)
В.sin2a 3)(-4/5)
4) 4/5

решение:
 п/2<α<п - угол принадлежит 2 четверти⇒ cos x отрицательный
cosx= -√(1-sin²x)= -√1-9/25= -√16/25= -4/5
ctgx=\frac{cosx}{sinx}= - \frac{4*5}{5*3}=-4/3
sin2x=2sinx cosx= - 2\frac{3}{5} \frac{4}{5}=-24/25

4)Вычислите cos210' и cos15'
cos210=cos(180+30)=-cos30= - \sqrt{3} /2
cos15=cos(45-30)=cos45*cos30+sin45*sin30=\frac{ \sqrt{2} }{2}* \frac{ \sqrt{3} }{2}+ \frac{ \sqrt{2} }{2}* \frac{1}{2}= \frac{ \sqrt{6}+ \sqrt{2} }{2}
4,7(73 оценок)
Ответ:
rudnevskaya20041
rudnevskaya20041
06.01.2021

Исследовать функцию y=-x^4+8x^2-9 и построить ее график.

1. Область определения функции - вся числовая ось.

2. Функция y=-x^4+8x^2-9 непрерывна на всей области определения. Точек разрыва нет.

3. Четность, нечетность, периодичность:

 Так как переменная имеет чётные показатели степени, то функция чётная, непериодическая.

4. Точки пересечения с осями координат: 

Ox: y=0, -x^4+8x^2-9=0, заменим x^2 = n.

Квадратное уравнение, решаем относительно n: 

Ищем дискриминант:

D=8^2-4*(-1)*(-9)=64-4*(-1)*(-9)=64-(-4)*(-9)=64-(-4*(-9))=64-(-(-4*9))=64-(-(-36))=64-36=28;

Дискриминант больше 0, уравнение имеет 2 корня:

n₁=(√28-8)/(2*(-1)) = (√28-8)/(-2) = -(2√7/2-8/2)= 4 -√7 ≈ 1,354249;

n₂ = (-√28-8)/(2*(-1)) = (-2√7-8)/(-2)= 4 + √7 ≈ 6,645751.

Обратная замена: х = √n.

x₁ = √1,354249 = 1,163722,     x₂ =   -1,163722.

 x₃ = √6,645751 = 2,57793,     x₄ = -2,577935.

Получаем 4 точки пересечения с осью Ох:

(1,163722; 0),  (-1,16372; 0),  (2,57793; 0),  (-2,57793; 0).

 x₃ = √6,645751 = 2,57793,

Oy: x = 0 ⇒ y = -9. Значит (0;-9) - точка пересечения с осью Oy.

5. Промежутки монотонности и точки экстремума:

y=-x^4+8x^2-9.

y'=0 ⇒-4x³+16x = 0 ⇒ -4x(x²-4) = 0.

Имеем 3 критические точки: х = 0, х = 2 и х = -2.

Определяем знаки производной вблизи критических точек.

x =   -3       -2      -1      0      1       2       3

y' =   60      0      -12     0     12      0     -60.

Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.

Минимум функции в точке: x = 0.

Максимумы функции в точках:

x = -2.

x = 2.

Убывает на промежутках (-2, 0] U [2, +oo).

Возрастает на промежутках (-oo, -2] U [0, 2).

 6. Вычисление второй производной: y''=-12х² + 16 , 

Найдем точки перегибов, для этого надо решить уравнение

\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0

(вторая производная равняется нулю),

корни полученного уравнения будут точками перегибов для указанного графика функции: 

\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0

Вторая производная  4 \left(- 3 x^{2} + 4\right) = 0.

Решаем это уравнение

Корни этого уравнения

x_{1} = - \frac{2 \sqrt{3}}{3}.

x_{2} = \frac{2 \sqrt{3}}{3}.

7. Интервалы выпуклости и вогнутости:

Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:

Вогнутая на промежутках [-2*sqrt(3)/3, 2*sqrt(3)/3]

Выпуклая на промежутках (-oo, -2*sqrt(3)/3] U [2*sqrt(3)/3, oo)

 8. Искомый график функции в приложении.

Подробнее - на -

Объяснение:

4,8(70 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ