Задача №1
Сколько можно составить сладких наборов по 3 шоколадки и 2 зефира из 9 различных шоколадок и 6 различных зефиров?
Задача №2
Сколько различных слов можно составить из букв слова «МАТЕМАТИКА»?
Задача №3
Девушка и юноша договорились о встрече с 14.00 до 15.00. Договорились, что каждый, пришедший первым, ждет другого не более 10 минут. Определите вероятность встречи.
Задача №4
Контролер в партии из 20 деталей наугад выбирает 5 деталей для проверки. Если среди выбранных деталей нет ни одной бракованной, то он принимает всю партию. Какова вероятность того, что контролер примет партию деталей, содержащую 7 бракованных?
Задача №5
В 11 классе три ученика, независимо друг от друга, решают задачу по теории вероятности. Вероятность того, что первый ученик не справится с задачей составляет 0,1, второй-0,3, а третий-0,2. Найдите вероятность того, что:
a) никто не решит задачу;
b) все решат задачу;
c) двое решат задачу;
d) хотя бы один не решит задачу;
e) хотя бы один решит задачу;
f) только один не решит задачу.
Задача №6
На четырех карточках написаны буквы: О, Т, И, П, Л. Карточки перевернули и перемешали. Затем открыли наугад последовательно эти карточки и
положили в ряд. Какова вероятность того, что получится слово «ПИЛОТ»?
Задача №7
Товарищ должен прийти на встречу с другом в промежутке времени от 15.00 ч до 15 ч 30 минут. Найдите вероятность того, что встреча произойдет с 15 ч 10 минут до 15ч 20 минут.
Задача №7
Программа экзамена содержит 40 во Студент Михаил знает ответы на 30 из них. Каждому студенту предлагают 2 во которые выбираются случайным образом. Какова вероятность, что студент Михаил ответит на оба во Задача №8
В школьной столовой испекли 80 пирожков, из них 20 с яблоками. Ученик наудачу покупает 6 пирожков. Какова вероятность того, что у него 4 пирожка с яблоками?
Задача №9
Внутри окружности, описанной около равностороннего треугольника со стороной 6 взята точка. Найдите вероятность того, что точка:
a) лежит внутри треугольника;
b) лежит внутри окружности, вписанной в треугольник;
c) лежит вне треугольника;
d) лежит внутри треугольника, но не внутри вписанной в него окружности.
Задача №10
Сколькими могут сесть пять СМЕШАРИКов в космический корабль, если каждый из них может быть пилотом?
Задача №11
Сколькими можно выбрать трех ответственных за праздник , посвященный 9МАЯ, из класса, в котором 20 человек?
Задача №12
Сколькими филателист может выбрать три марки из пяти, предложенных продавцом?
Задача №13
Сколькими можно разложить 12 различных игрушек по трем ящикам
Буду очень благодарен
На всякий случай прикрепил файл с заданиями))
х (1/ч) - производительность Игоря
у (1/ч) - производительность Паши
z (1/ч) - производительность Володи
{1 + 1 = 1
х у 10
{1 + 1 = 1
у z 12
{1 + 1 = 1
z x 15
1 = 1 - 1
x 10 y
1 = 1 - 1
z 12 y
1 = 1 - 1 = 1 - 1 + 1 = 10 - 15 + 1 = - 1 + 1
z 15 x 15 10 y 150 y 30 y
-1 + 1 = 1 - 1
30 y 12 y
1 + 1 = 1 + 1
y y 12 30
2 = 5 + 2
y 60
2 = 7
y 60
1 = 7
y 120
1 = 1 - 7 =12-7 = 5
х 10 120 120 120
1 = 1 - 7 = 10-7 = 3
z 12 120 120 120
1 + 1 + 1 = 7 + 5 + 3 = 15 = 1 - общая производительность всех
x y z 120 120 8 троих ребят
8 ч = 8*60=480 (мин) - втроем ребята покрасят забор.
ответ: 480 мин