1)из первых двух уравнений:
z=7-2x-y
z=8-x-2y приравниваем 7-2x-y=8-x-2y , выразим y (можно было бы и выразить х, как кому удобнее) приводим подобные и получаем у=1+х
2) из 3 ур-я выражаем z : 2z= 9-x-y, z=(9-x-y)/2 в это уравнение вместо у подставляем значение которое у нас получилось в 1 пункте: z= 4-x
3) из первого ур-я выражаем z : z=7-2x-y сюда вместо у подставляем значение которое получили в пункте 1, получается z=7-2x-1-x=6-3x
4)приравниваем пункт 2 и 3, получается 6-3x=4-x, х=1
5) мы нашли что у=1+х=1+1=2
6) мы нашли что z=4-x=4-1=3
проверка
в ур-е 1 подставим полученные значения
2*1+2+3=7
7=7
Если лежат по разные стороны от прямой, то полуразности этих расстояний. (12-4)/2 = 4 см.
На промежутке [-2π/3;0] функция cosx возрастает, а у=-2xcosx - убывает. Числа 19 -18/π -постоянные, они не влияют на поведение функции. Наибольшее значение при х = -2π/3.
Оно равно 19-2*cos(-2π/3)-18/π = 19-2*(-1/2) -18/π = 20-18/π.
Это в том случае, если косинус х.( без скобок).