Номер 1: 3^-3=-27 ответ Б Так как степень отрицательная, знак не поменяется. То есть минус останется минусом -3*(-3)*(-3)=-27
Номер2: Х^-5:х^3= х^-8
Когда делишь надо вычитать степени. Основание остаётся одинаковым, а степень -5-3= -8
Номер3: А) приводишь все к одинаковому основанию т.е 2: 8 это 2^3 у тебя ещё 8 в квадрате=> (2^3)^2 Раскрывая скобку надо 3 умножить на 2. Значит 2 в 6 степени
2^-14 такой и остаётся
4 это 2 в квадрате, там ещё -6 степень => (2^2)^-6 умножаешь степени= 2^-12
2^6*2^-14 ————— 2^-12
В знаменателе когда 2 числа умножаешь само основание 2 не изменяется, а степени надо прибавить т.е 6+(-14)= -8
2^-8 ——- 2^-12
Основание остаётся, степени вычитаются -8-(-12)=-8+12= 4
ответ: 2^4=16
Б) 9^2*3^-10 —————— 27^-3
Приводим к одинаковому основанию 3
9 это 3 в квадрате, там ещё и 2 степень а значит 3^4 3^-10 не трогаем 27^-3 это (3^3)-3= 3^-9 3^4*3^-10 ————— 3^-9
В знаменателе степени прибавляем 4+(-10)= -6
3^-6 –—— = 3^3 ( степени вычитаешь) 3^-9
3 в кубе это 27. ответ 27
Номер5: За скобки выносим б^3 В скобке остаётся b^3 (1-b^2)
Функцию у = f(x), х є Х, называют четной, если для любого значения х из множества X выполняется равенство f (-х) = f (х). Определение 2. Функцию у = f(x), х є X, называют нечетной, если для любого значения х из множества X выполняется равенство f (-х) = -f (х). Пример 1. Доказать, что у = х4 — четная функция. Решение. Имеем: f(х) = х4, f(-х) = (-х)4. Но (-х)4 = х4. Значит, для любого х выполняется равенство f(-х) = f(х), т.е. функция является четной. Аналогично можно доказать, что функции у — х2,у = х6,у — х8 являются четными. Пример 2. Доказать, что у = х3~ нечетная функция. Решение. Имеем: f(х) = х3, f(-х) = (-х)3. Но (-х)3 = -х3. Значит, для любого х выполняется равенство f (-х) = -f (х), т.е. функция является нечетной. Аналогично можно доказать, что функции у = х, у = х5, у = х7 являются нечетными. Мы с вами не раз уже убеждались в том, что новые термины в математике чаще всего имеют «земное» происхождение, т.е. их можно каким-то образом объяснить. Так обстоит дело и с четными, и с нечетными функциями. Смотрите: у — х3, у = х5, у = х7 — нечетные функции, тогда как у = х2, у = х4, у = х6 — четные функции. И вообще для любой функции вида у = х" (ниже мы специально займемся изучением этих функций), где n — натуральное число, можно сделать вывод: если n — нечетное число, то функция у = х" — нечетная; если же n — четное число, то функция у = хn — четная. Существуют и функции, не являющиеся ни четными, ни нечетными. Такова, например, функция у = 2х + 3. В самом деле, f(1) = 5, а f (-1) = 1. Как видите, здесь Функция Значит, не может выполняться ни тождество f(-х) = f (х), ни тождество f(-х) = -f(х). Итак, функция может быть четной, нечетной, а также ни той ни другой.
4,05; 51/13; 3,6; 36/11.
Объяснение:
Расположить числа в поряд
ке убывания:
Самое большое число то, у
которого больше целая часть-
это 4,05.
В неправильных дробях выде
ляем целую часть:
36/11=3 3/11
51/13=3 12/13
Десятичную дробь запишем в
виде обыкновенной:
3,6=3 6/10=3 3/5
У всех оставшихся чисел це
лые части совпадают. Срав
ниваем их дробные части.
Все знаменатели - простые
числа. Наименьшим общим
знаменателем для трех дро
бей будет НОК(11; 13; 5).
Так как все числа простые,
их нужно просто перемножить
НОК(11; 13; 5)=11×13×5=715
3/11=3×65/715=195/715
12/13=12×55/715=660/715
3/5=3×143/715=429/715
660/715>429/715>195/715
Отсюда следует, что:
12/13>3/5>3/11
Значит:
4,05>3 12/13>3 3/5>3 3/11
ответ: 4,05; 51/13; 3,6; 36/11.