Объяснение:
Дана функция y=2x+7
Найти:
1)Значение функции при значении аргумента 4, 0, 1, - 7.
2)Значение аргумента при значении функции 9.
1)Чтобы найти значение у, нужно известное значение х подставить в уравнение и вычислить у:
а)х=4
у=2*4+7=15 у=15 при х=4
б)х=0
у=0+7=7 у=7 при х=0
в)х=1
у=2*1+7=9 у=9 при х=1
г)х= -7
у=2*(-7)+7= -7 у= -7 при х= -7
2)Чтобы найти значение х, нужно известное значение у подставить в уравнение и вычислить х:
у=9
9=2х+7
-2х=7-9
-2х= -2
х=1 при х=1 у=9
Дана функция y=2x-7
Найти:
1)Значение функции при значении аргумента 4, 0, 1, - 7.
2)Значение аргумента при значении функции 9.
1)Чтобы найти значение у, нужно известное значение х подставить в уравнение и вычислить у:
а)х=4
у=2*4-7=1 у=1 при х=4
б)х=0
у=0-7= -7 у= -7 при х=0
в)х=1
у=2*1-7= -5 у= -5 при х=1
г)х= -7
у=2*(-7)-7= -21 у= -21 при х= -7
2)Чтобы найти значение х, нужно известное значение у подставить в уравнение и вычислить х:
у=9
9=2х-7
-2х= -7-9
-2х= -16
х=8 при х=8 у=9
Поскольку, любое уравнение можно поделить на его старший коэффициент, то будем считать, для удобства, что мы рассматриваем два приведенных кубических уравнения с рациональными коэффициентами.
Поскольку, данные уравнения имеют общий корень, то уравнение, являющееся их разностью, тоже содержит этот корень:
А значит, данный общий иррациональный корень принимает вид :
, где
- рациональные числа, при этом
не полный квадрат, отсюда в частности
.
Попробуем показать, что если
корень уравнения
Если число
является корнем данного уравнения , то сделаем замену:
, тогда после раскрытия скобок данное уравнение так же будет с рациональными коэффициентами и будет иметь корень
Такое уравнение примет вид :
Учитывая, что
Предположим, что
, но тогда , учитывая, что
- не полный квадрат, то левая часть равенства иррациональна, а правая рациональна, что невозможно. То есть мы пришли к противоречию, а значит : 
Таким образом:
Аналогично, доказывается, что если
корень данного уравнения, то и
корень этого уравнения.
Таким образом, мы доказали, что если
корень уравнения
А значит, данные кубические многочлены имеют еще один общий иррациональный корень.
Что и требовалось доказать.