Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.
Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.
Свойство № 1
Произведение степеней
Запомните!
При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.
am · an = am + n, где «a» — любое число, а «m», «n» — любые натуральные числа.
Данное свойство степеней также действует на произведение трёх и более степеней.
Примеры.
Упростить выражение.
b · b2 · b3 · b4 · b5 = b 1 + 2 + 3 + 4 + 5 = b15
Представить в виде степени.
615 · 36 = 615 · 62 = 615 · 62 = 617
Представить в виде степени.
(0,8)3 · (0,8)12 = (0,8)3 + 12 = (0,8)15
Важно!
Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями. Оно не относится к их сложению.
Нельзя заменять сумму (33 + 32) на 35. Это понятно, если
посчитать (33 + 32) = (27 + 9) = 36 , а 35 = 243
Свойство № 2
Частное степеней
Запомните!
При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.
aman = am − n, где «a» — любое число, не равное нулю, а «m», «n» — любые натуральные числа такие, что «m > n».
2.17 (3 твоя задача) решается по такому же алгоритму, как и 2.13 (1 задача). Алгоритм на примере 3-ей задачи, пункта А:
√0,(4). Пусть х = 0,4 (так как после запятой 1 знак, умножать надо на 10) Тогда 10 х = 4,(4) Далее от 1-го выражения (пусть) отнимаем второе (тогда). 10 х - 9 х = 4(4) - 0,(4) (фишка в том, чтобы сократился период) 9 х = 4 х = 4/9 => (заносим под корень и представляем в виде периодичной десятичной дроби) => √0,(6).
1-я и 3-я задачи решаются по такому принципу, а вторая вообще простенькая, спросишь у кого-нибудь в классе.
2.17 (3 твоя задача) решается по такому же алгоритму, как и 2.13 (1 задача). Алгоритм на примере 3-ей задачи, пункта А:
√0,(4). Пусть х = 0,4 (так как после запятой 1 знак, умножать надо на 10) Тогда 10 х = 4,(4) Далее от 1-го выражения (пусть) отнимаем второе (тогда). 10 х - 9 х = 4(4) - 0,(4) (фишка в том, чтобы сократился период) 9 х = 4 х = 4/9 => (заносим под корень и представляем в виде периодичной десятичной дроби) => √0,(6).
1-я и 3-я задачи решаются по такому принципу, а вторая вообще простенькая, спросишь у кого-нибудь в классе.
Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.
Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.
Свойство № 1
Произведение степеней
Запомните!
При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.
am · an = am + n, где «a» — любое число, а «m», «n» — любые натуральные числа.
Данное свойство степеней также действует на произведение трёх и более степеней.
Примеры.
Упростить выражение.
b · b2 · b3 · b4 · b5 = b 1 + 2 + 3 + 4 + 5 = b15
Представить в виде степени.
615 · 36 = 615 · 62 = 615 · 62 = 617
Представить в виде степени.
(0,8)3 · (0,8)12 = (0,8)3 + 12 = (0,8)15
Важно!
Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями. Оно не относится к их сложению.
Нельзя заменять сумму (33 + 32) на 35. Это понятно, если
посчитать (33 + 32) = (27 + 9) = 36 , а 35 = 243
Свойство № 2
Частное степеней
Запомните!
При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.
aman = am − n, где «a» — любое число, не равное нулю, а «m», «n» — любые натуральные числа такие, что «m > n».
Примеры.
Записать частное в виде степени
(2b)5 : (2b)3 = (2b)5 − 3 = (2b)2
Вычислить. 113 · 4 2112 · 4 = 113 − 2 · 4 2 − 1 = 11 · 4 = 44
Пример. Решить уравнение. Используем свойство частного степеней.
38 : t = 34
t = 38 : 34
t = 38 − 4
t = 34
ответ: t = 34 = 81
Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.
Пример. Упростить выражение.
45m + 6 · 4m + 2 : 44m + 3 = 45m + 6 + m + 2 : 44m + 3 = 46m + 8 − 4m − 3 = 42m + 5
Пример. Найти значение выражения, используя свойства степени.
512 · 432 = 512 · 432 = 29 · 2225 = 29 + 225 = 21125 = 211 − 5 = 2 6 = 64
Важно!
Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.
Нельзя заменять разность (43 −42) на 41. Это понятно, если посчитать (43 −42) = (64 − 16) = 48, а 41 = 4
Будьте внимательны!
Источник: http://math-prosto.ru