Обозначим числа x₁, x₂, ... x₁₀. По условию x₁ = -2 и -2 + x₂ = x₃, тогда x₄ = -2 + 2x₂, x₅= -4 + 3x₂, x₆= -6 + 5x₂, x₇ = -10 + 8x₂, x₈ = -16 + 13x₂, x₉ = -26 + 21x₂ и x₁₀ = -42 + 34x₂. По условию x₁₀ = -42 + 34x₂ = 8. Отсюда 34x₂ = 50 и x₂ = 50/34 = 25/17. Подставляя поочерёдно x₂ в другие равенства, находим остальные числа: x₃ = -9/17, x₄ = 16/17, x₅ = 7/17, x₆ = 23/17, x₇ = 30/17, x₈ = 53/17, x₉ = 83/17 и x₁₀ = 8. Искомый ряд: -2, 25/17, -9/17, 16/17, 7/17, 23/17, 30/17, 53/17, 83/17, 8.
ответ: Остальные числа 25/17, -9/17, 16/17, 7/17, 23/17, 30/17, 53/17, 83/17.
5x=0+8.5 8x-6x=1.5+7.5
5x=8.5 2x=9
x=8.5/5 x=9/2
x=1,7 x=4.5
в)4x-(9x-6)=46 г)(x-2.5)*(5+x)=0
4x-9x+6=46 x-2.5*5+x=0
-5x=46-6 2x=12.5
x=40/-5 x=12.5/2
x=-8 x=6.25
д) 2х/5=(х-3)/2 е) 7х-(х+3)=3(2х-1)
2x-x=-3/2*5 нет корней
x=-7.5
№2 х*2+8=6х
2х-6х=-8
-4х=-8
х=-8/-4
х=2
№3
1) х+2х+х+80=3080
4х+80=3080
4х=3080-80
х=3000/4
х=750 ( уч) в первой школе
2)750+80=830 (уч) во второй школе
3)750*2=1500 ( уч) в третьей школе
№4 х+25=2х-16
х-2х=-16-25
х=41 (т) в первом магазине первоначально
41*2=82 (т) во втором магазине первончально