Решение системы уравнений х₁=5 х₂= -6 х₃=6
у₁=1 у₂= -10 у₃=2
Объяснение:
Решить систему уравнений
(x-5y)(x²-36)=0
x-y=4
Выразим х через у во втором уравнении:
х=4+у
Первые скобки приравняем к нулю, как один из множителей, дающих в результате ноль:
x-5y=0
Подставим выраженное х через у:
4+у-5у=0
4-4у=0
-4у= -4
у= -4/-4
у₁=1
Теперь подставляем значение у в уравнение первых скобок и вычисляем х:
x-5y=0
х=5у
х=5*1
х₁=5
Теперь приравняем к нулю вторые скобки, как один из множителей, дающих в результате ноль:
x²-36=0
x²=36
х₂,₃=±√36
х₂= -6
х₃=6
x-y=4
-у=4-х
у=х-4
у₂=х₂-4
у₂= -6-4
у₂= -10
у₃=х₃-4
у₃=6-4
у₃=2
Решение системы уравнений х₁=5 х₂= -6 х₃=6
у₁=1 у₂= -10 у₃=2
Объяснение:
1)у= -2x²-6x
-2x²-6x=0
2x²+6x=0
х(2х+6)=0
х₁=0
2х+6=0
2х= -6
х₂= -3
Строим график параболы. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -4 -3 -2 -1 0 1
у -8 0 4 4 0 -8
Смотрим на график и полученные значения х₁= 0 и х₂= -3.
Вывод: у<0 при х∈(-∞, -3) ∪(0, ∞)
(у меньше нуля при х от - бесконечности до -3 и от 0
до + бесконечности)
2)у= -3x²+5х
-3x²+5х=0
3x²-5х=0
х(3х-5)=0
х₁=0
3х-5=0
3х= 5
х₂= 5/3 (≈ 1,7)
Строим график параболы. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -2 -1 0 1 2 3
у -22 -8 0 2 -2 -12
Смотрим на график и полученные значения х₁= 0 и х₂=5/3.
Ветви параболы направлены вниз.
Вывод: у<0 при х∈(-∞, 0)∪(5/3, ∞)
(у меньше нуля от - бесконечности до 0 и от 5/3 до
+ бесконечности)
3)у= -x²+4x-4
-x²+4x-4=0
x²-4x+4=0, квадратное уравнение, ищем корни:
х₁,₂=(4±√16-16)/2
х₁,₂=(4±0)/2
х₁,₂=2
Строим график параболы. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -2 -1 0 1 2 3 4 5 6
у -16 -9 -4 -1 0 -1 -4 -9 -16
Смотрим на график и полученные значения х₁= 2 и х₂=2.
Ветви параболы направлены вниз.
Вывод: у<0 при х∈(-∞, 2)∪(2, ∞)
(у меньше нуля от - бесконечности до 2 и от 2 до
+ бесконечности)
4)y= -2x² -2,6
-2x² -2,6=0
2x² +2,6=0
2x² = -2,6
х²= -1,3, нет точек пересечения с осью Ох.
Строим график параболы. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу.
Таблица:
х -3 -2 -1 0 1 2 3
у -12 -2 4 6 4 -2 -12
Смотрим на график.
Ветви параболы направлены вниз.
Так как вершина параболы находится в точке (0; -2,6), вся парабола находится ниже у= -2,6
Вывод: у<0 при х∈(-∞, ∞)
(у меньше нуля при любом х, от - бесконечности до + бесконечности)
{а, б}
{б, г}
{а, г}
{А,е}
{а, б}
{а, д}