Максимум в точке х = (для записи
)
Минимум в точке х = -1
Объяснение:
f(x)=2x^3+7x^2+8x+4
Область определения:
Х∈R
f(x)=2x^3+7x^2+8x+4, Х∈R
Определим производную f:
f(x) = 2x^3+7x^2+8x+4
f'(x) = d/dx (2x^3+7x^2+8x+4)
f'(x) = d/dx(2x^3) + d/dx(7x^2) + d/dx(8x) + d/dx(4)
f'(x) = 2*3x^2 + 7*2x+8+0
f'(x) = 6x^2+14x+8
f'(x) = 6x^2+14x+8, Х∈R
Представим f'(x) = 0
0=6x^2+14x+8
Решим ур-е относительно Х
6x^2+14x+8=0 | :2
3x^2+7x+4=0
D=b2-4ac = 7^2-4*3*4 = 1
x1,2= -b+-D/2a = -7+-1/2*3
x1= - 4/3
х2= -1
X∈(-∞;- 4/3)
X∈(- 4/3;-1)
max: - 4/3
min: -1
-4х-4х = -5-3
-8х = -8
х = 1
2) 4x+4=-6x-5
4х+6х=-5-4
10х= -9
x = -0.9
3) 3x+3=-2-7x
3x + 7x = -2 -3
10x = - 5
x = - 0.5
4)-1-8x=-10x+3
-8x+10x = 3+1
2x = 4
x = 2
5)7-6x=-4x-6
-6x + 4x = -6-7
-2x = -13
x = 6.5
6)2(x-7)=3
2x - 14 = 3
2x = 3+14
2x = 17
x = 8.5
7) 5(x-9)=-2
5x - 45 = -2
5x = -2 + 45
5x = 43
x = 8.6
8) 7(-3+2x)=-6x-1
-21 + 14x = -6x - 1
14x + 6x = -1+21
20x = 20
x = 1
9) 2(7+9x)=-6x+2
14 + 18x = -6x + 2
18x+6x = 2-14
24x = -12
x = -0.5
10) 4(2-3x)=-7x+10
8 -12x =-7x + 10
-12x + 7x = 10-8
-5x = 2
x = -0.4