М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kopalkina02
kopalkina02
16.02.2022 12:45 •  Алгебра

ОЧЕНЬ НАЙТИ ПРОИЗВОДНЫЕ СУММАТИВНАЯ РАБОТА


ОЧЕНЬ НАЙТИ ПРОИЗВОДНЫЕ СУММАТИВНАЯ РАБОТА

👇
Ответ:
antonovneeck
antonovneeck
16.02.2022

всё штоли в калькуляторе очень легко

4,4(97 оценок)
Открыть все ответы
Ответ:
Olzhas2889
Olzhas2889
16.02.2022

Упростить выражение:

\left(\frac{6}{y^2-9}+\frac{1}{3-y}\right)\cdot \frac{y^2+6y+9}{5} = \\\\= \left(\frac{6}{(y-3)(y+3)}-\frac{1}{y-3}\right)\cdot \frac{(y+3)^2}{5} = \\\\= \frac{6-y-3}{(y-3)(y+3)} \cdot \frac{(y+3)^2}{5} = \\\\= -\frac{(y-3)(y+3)^2}{5(y-3)(y+3)} = \\\\=-\frac{y+3}{5}

Задача: Два автомобиля выезжают одновременно из одного города в другой, находящийся на расстоянии 560 км. Скорость первого на 10 км больше скорости второго, и поэтому первый автомобиль приезжает на место на 1 час раньше другого. Определить скорость каждого автомобиля.

Пусть скорость второго автомобиля — х км/ч, тогда скорость первого — х+10 км/ч. Второй был в пути \frac{560}{x} часов, а первый — \frac{560}{x+10} часов. Зная, что второй автомобиль был в дороге дольше на 1 час, составим и решим математическую модель:

    \frac{560}{x} - \frac{560}{x+10} = 1\\560(x+10)-560x=x(x+10)\\560x+5600-560x=x^2+10x\\x^2+10x-5600=0\\\frac{D}{4}=25+5600=5625=75^2 \\x=-5\pm \sqrt{75^2} = \\x_1 = -5+75=70\\x_2 = -5-75=-80 \:\: \Rightarrow \:\: x_2 \leq 0 \:\: \Rightarrow\:\: x_2 \in \varnothing

Скорость второго автомобиля — х = 70 км/ч, скорость первого — х+10 = 70+10 = 80 км/ч

скорость первого автомобиля — 80 км/ч;скорость второго автомобиля — 70 км/ч.

Задача: При каких значения x функция y=-\frac{x-8}{4}+1 принимает положительные значения.

-\frac{x-8}{4}+10 \:\: \big | \cdot (-4) \\-\frac{-4(x-8)}{4} +(-4)0\cdot(-4) \\x-8-4

x\in (-\infty; 12).

ответ: x < 12 или x ∈ (−∞; 12).

4,8(27 оценок)
Ответ:
lizabjnyjyve
lizabjnyjyve
16.02.2022
Решение:
Сперва определим ОДЗ неравенства. Очевидно, что значение x не должно совпадать со значением 2.
Поскольку, знаменатель - это неотрицательное число, то числитель тоже не должен быть отрицательным.
Решается методом интервалов. В силу того, что сама дробь должна быть больше 0, то числитель тоже должен быть больше 0 (про знаменатель уже сказали). Как решать неравенство методом интервалов? На вашем примере, думаю, будет все ясно.
Находим нули функций (иными словами, находим те значения x, так, чтобы функция была равна 0 и соблюдалось ОДЗ). Это: x=-2;3;4. Отмечаем значения на числовом луче. Определяем знакопостоянство: если x<-2, то числитель отрицателен (отмечаем на луче). При всех остальных значениях числитель - положительный (за исключением x=2, потому что при этом значении знаменатель обращается в нуль, а мы знаем,что на 0 делить нельзя). Получили интервал: отрицательный: (-\infty;-2)
И положительный: (-2;3) (рис. 2)
Далее, снова отрицательный: (3;4)
И положительный: (4; \infty)
Но, в условии сказано: найти кол-во целых отрицательных чисел, удовлетворяющих неравенству. Опять же, обращаясь к нашему промежутку чисел, находим, что их только 2: -2 и -1. Однако, -2 обращает дробь в 0, поэтому, число только одно.
ответ: -1

Найдите количество целых отрицательных решений неравенства объясните
4,8(28 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ