ab - ac - 4b + 4c = a(b - c) - 4(b - c) = (b - c)(a - 4).
Как выполняется: ищем что-то одинаковое у нескольких слагаемых. Так, мы увидели одинаковый сомножитель a в слагаемых ab и -ac, одинаковый сомножитель 4 у слагаемых -4b и 4c. Вынесли их за скобку и заметили, что появились две одинаковые скобки: (b - c) – которые являются сомножителями для a(b - c), -4(b - c). Выносим за скобку его и получаем разложение.
То есть вам нужно найти что-то одинаковое у нескольких слагаемых и вынести это за скобку.
ответ: (b - c)(a - 4).
1) ||x - 1| - 1| = 1
Распадается на два уравнения
a) |x - 1| - 1 = -1
|x - 1| = 0; x1 = 1
b) |x - 1| - 1 = 1
|x - 1| = 2
x - 1 = -2; x2 = -1
x - 1 = 2; x3 = 3
ответ: x1 = 1; x2 = -1; x3 = 3
2) ||x - 1| - 1| = 2
Распадается на два уравнения
a) |x - 1| - 1 = -2
|x - 1| = -1
Решений нет
b) |x - 1| - 1 = 2
|x - 1| = 3
x - 1 = -3; x1 = -2
x - 1 = 3; x2 = 4
ответ: x1 = -2; x2 = 4
3) ||x + 2| - 2| = 1
Распадается на два уравнения
a) |x + 2| - 2 = -1
|x + 2| = -1
Решений нет
b) |x + 2| - 2 = 1
|x + 2| = 3
x + 2 = -3; x1 = -5
x + 2 = 3; x2 = 1
4) ||x + 2| - 2| = 2
Распадается на два уравнения
a) |x + 2| - 2 = -2
|x + 2| = 0; x3 = -2
b) |x + 2| - 2 = 2
|x + 2| = 4
x + 2 = -4; x4 = -6
x + 2 = 4; x5 = 2
ответ: x1 = -5; x2 = 1; x3 = -2; x4 = -6; x5 = 2