Обозначим скорость первого автомобиля за х км/ч Путь - S км Время движения первого автомобиля t=S/x ч Второй автомобиль проехал первую половину пути S/2 со скоростью 60 км/ч, значит его время на этом участке равно t=S/(2*60)=S/120 ч. Вторая половина пути была пройдена эти автомобилем со скоростью (х+18) км/ч. Значит время на этом участке равно t=S/(2*(x+18)) ч. Получаем уравнение: S/x=S/120 + S/(2*(x+18)) Приводим к общему знаменателю и сокращаем на S. Получаем: 2160+120х=х²+18х+60х х²+78х-120х-2160=0 х²-42х-2160=0 D=1764+8640=10404 х₁=(42-102):2=-30 скорость не может быть отрицательна х₂=(42+102):2=144:2=72 км/ч скорость первого автомобиля
Обозначим скорость первого автомобиля за х км/ч Путь - S км Время движения первого автомобиля t=S/x ч Второй автомобиль проехал первую половину пути S/2 со скоростью 60 км/ч, значит его время на этом участке равно t=S/(2*60)=S/120 ч. Вторая половина пути была пройдена эти автомобилем со скоростью (х+18) км/ч. Значит время на этом участке равно t=S/(2*(x+18)) ч. Получаем уравнение: S/x=S/120 + S/(2*(x+18)) Приводим к общему знаменателю и сокращаем на S. Получаем: 2160+120х=х²+18х+60х х²+78х-120х-2160=0 х²-42х-2160=0 D=1764+8640=10404 х₁=(42-102):2=-30 скорость не может быть отрицательна х₂=(42+102):2=144:2=72 км/ч скорость первого автомобиля
2
Объяснение:
Преобразуем выражение под корнем
Такой корень является действительным, только если подкоренное выражение равно 0:
При этом должно выполняться условие равенства 0 левой части:
Таким образом, на плоскости существует ровно 2 точки: