Для начала нужно разложить на множители знаменатель третьей дроби. Разложив, получим (х-5)*(х-4). Далее выберем общий множитель. Он будет таким: (х-3)(х-4)(х-5). Теперь сократим знаменатели дробей на данный множитель. У нас останется: х-5 + х-4 + х-3 ≤1. Перенесем числа -5, -4, -3 в другую часть неравенства, соответственно меняя знак на противоположный. Получится: х + х + х ≤ 1 + 5 + 4 + 3. Сложим числа и иксы:
3х ≤ 13. Разделим обе части на 3:
х ≤ четыре целых одна третья. Теперь осталось записать данное выражение в числовом промежутке: (-∞; четыре целых одна третья].
Решено.
Объяснение:
а) a1 = 30, a2 = 24, d = 24 - 30 = -6
Формула n-ого члена: a(n) = 36 - 6n
b) Найдем количество положительных чисел в этой прогрессии
{ a(n) = 36 - 6n > 0
{ a(n+1) = 36 - 6(n+1) < 0
Раскрываем скобки
{ a(n) = 36 - 6n >= 0
{ a(n+1) = 36 - 6n - 6 = 30 - 6n < 0
Переносим n направо и делим неравенства на 6
{ 6 >= n
{ 5 < n
Очевидно, n = 5
a(5) = 36 - 6*5 = 6
a(6) = 36 - 6*6 = 0
c) Определим количество чисел, если их сумма равна -78.
S = (2a1 + d*(n-1))*n/2 = -78
(2*30 - 6*(n-1))*n = -78*2 = -156
(66 - 6n)*n = -156 = -6*26
Сокращаем на 6
(11 - n)*n = -26
n^2 - 11n - 26 = 0
(n - 13)(n + 2) = 0
Так как n > 0, то n = 13
Неравенство треугольника : сумма любых двух сторон должна быть больше третьей стороны.
Если две боковые стороны по 3 см, основание 5 см, то неравенство выполняется :
3 + 5 > 3; 3 + 3 > 5
Тогда периметр равен P₁ = 5 + 3 + 3 = 11 см.
Если две боковые стороны по 5 см, основание 3 см, то неравенство выполняется :
5 + 5 > 3; 5 + 3 > 5
Тогда периметр равен P₂ = 5 + 5 + 3 = 13 см.
В условии даны только номера ответов, но нет периметров.