x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
Решил только 5, за такие только это:
1) x - √x - 12 = 0
-√x = -x + 12
√x = -x + 12
√x = x - 12
x = x² - 24x + 144
x - x² + 24x - 144 = 0
25x - x² + 24x - 144 = 0
x² - 25x + 144 = 0
D = 625 - 576 = 7²
x = (25 + 49)/4 = 16
ответ: 16
2) ∛x² + 8 = 9∛x
∛x² + 8 - 9∛x = 0
t² - 9t + 8 = 0
D = 81 - 32 = 7²
t1 = 1 t2 = 8
x = 1 x = 512
ответ: 1; 512
3) √x - 2/√x = 1
(x - 2 - √x)/√x = 0 x>1
x - 2 - √x = 0
√x = x - 2
x² - 5x + 4 = 0
D = 25 - 16 = 3²
x = 4
ответ: 4
4) √(x + 5) - 3∜(x+5) + 2 = 0
t² - 3t + 2 = 0
D = 9 - 8 = 1²
t1 = 1 t2 = 2
∜(x + 5) = 1 ∜(x + 5) = 2
x = -4 x = 11
ответ: -4; 11
5) 1/(∛x + 1) + 1/(∛x+3) = 0
(∛x + 3 + 2(∛x + 1))/((∛x + 1) * (∛x+3)) = 0
∛x + 3 + 2(∛x + 1) = 0
∛x + 3 + 2∛x + 2 = 0
3∛x + 5 = 0
3∛x = -5
x = -(5/3)³
x = -4,629
ответ: -4,629