Объяснение: 2x²-8x+c = 0.
Имеем квадратное уравнение, где с - некоторое произвольное число (параметр), поэтому при разных значениях с уравнение может как иметь корни, так и не иметь. Поэтому нужно решить уравнения для всех возможных значений с.
Найдем дискриминант:
Рассмотрим 3 различных случая:
1) D < 0. Если D < 0, то уравнение не имеет решений. Найдем значения с, при которых дискриминант отрицателен: 64 - 8c < 0; 8c > 64 ⇔ c > 8. При таких значениях с корней у нас не будет вообще.
2) D = 0. Если D = 0, то уравнение имеет единственное решение: Найдем значение с, при котором дискриминант равен 0: 64 - 8c = 8 ⇔ c = 8. При таком значении параметра имеем один корень - х = 2.
3) D > 0. Если D > 0, то уравнение имеет два различных корня, которые находятся по общей формуле: . Выразим каждый из корней:
Аналогично
Найдем значения с, при которых дискриминант положителен: 64 - 8с > 0; 8с < 64 ⇔ c < 8. При таких значениях параметра у нас будут два корня:
ОТВЕТ: если с < 8, то если с = 8, то х = 2; если с > 8, то корней нет.
x 4 +4 x 2 -21=0 .
Положив x 2 = y , получим квадратное уравнение y 2 +4 y -21=0 , откуда находим y 1 = -7, y 2 =3 . Теперь задача сводится к решению уравнений x 2 = -7, x 2 =3 . Первое уравнение не имеет действительных корней, из второго находим
x1=√3 x2=-√3
которые являются корнями заданного биквадратного уравнения.
Объяснение:
Биквадратным называется уравнение вида ax 4 + bx 2 + c =0 , где a <> 0 .
Биквадратное уравнение решается методом введения новой переменной: положив x 2 = y , прийдем к квадратному уравнению ay 2 + by + c =0 .