Во слишком много - ответы тоже краткие.
Объяснение:
1,1 f(-6) = 1/3*36 +12 = 24 - ответ.
1.2 f(2) = 1/3*4 - 2*2 = - 2 2/3 - ответ
2. Не допускается деление на 0.
Дано: y =x²-1*x-6 - квадратное уравнение.
Вычисляем дискриминант - D.
D = b² - 4*a*c = (-1)² - 4*(1)*(-6) = 25 - дискриминант. √D = 5.
Вычисляем корни уравнения.
x₁ = (-b+√D)/(2*a) = (1+5)/(2*1) = 6/2 = 3 - первый корень
x₂ = (-b-√D)/(2*a) = (1-5)/(2*1) = -4/2 = -2 - второй корень
3 и -2 - корни уравнения - исключить из ООФ.
D(f) = R\{-2;3} = (-∞;-2)∪(-2;3)∪(3;+∞) - ответ
3,1
Дано: y = x²-4*x+3 - квадратное уравнение.
D = b² - 4*a*c = (-4)² - 4*(1)*(3) = 4 - дискриминант. √D = 2.
Вычисляем корни уравнения.
x₁ = (-b+√D)/(2*a) = (4+2)/(2*1) = 6/2 = 3 - первый корень
x₂ = (-b-√D)/(2*a) = (4-2)/(2*1) = 2/2 = 1 - второй корень
3 и 1 - нули функции.
Минимум посередине между нулями = (1+3)/2 = 2 = x.
Fmin(2) = -1
Вершина параболы в точке А(2;-1), ветви вверх.
1) E(f) = [-1;+∞) - область значений.
2) Убывает: х = (-∞;2)
3) Положительна при Х=(-∞;1)∪(3;+∞) - ответ
4) Графики на рисунке в приложении.
5) Разрывы при делении на 0 в знаменателе.
х² ≠ 16 и х ≠ ± 4.
D(f) = R\{-4;4} = (-∞;-4)∪(-4;4)∪(4;+∞) - ответ.
Рассмотрим функцию
Её область определения:
Приравниваем функцию к нулю:
Произведение равно нулю, если один из множителей равен нулю
На интервале найдем решение неравенства
_+___(-2)___-___(0)___-___(2)___+___
Решением неравенства есть промежуток -
Целое отрицательное число из промежутка: -1
ответ: -1.
При умножении неравенства на отрицательное число, знак неравенства меняется на противоположный
Целые отрицательные числа промежутка: -3; -2; -1.
ответ: -3; -2; -1.
Рассмотрим функцию
Область определения:
Приравниваем функцию к нулю:
Дробь обращается в 0 тогда, когда числитель равен нулю
По т. Виета:
Найдем решение неравенства
___+___(-1)___-____(0)____-__(2)____+____
Целых отрицательных чисел - НЕТ
ответ: целых отрицательных чисел нет
Рассмотрим функцию
Область определения функции:
Приравниваем функцию к нулю
Дробь обращается в нуль, если числитель равен нулю
Вычислим решение неравенства:
__+___(-√3)__-__[-1]__+___[0]___-__(√3)__+____
Решение неравенства:
Целые отрицательные решения : -1
ответ: -1.