x² + (m - 1)x + m² - 1,5 = 0
По теореме Виета :
x₁ + x₂ = - (m - 1)
x₁ * x₂ = m² - 1,5
x₁² + x₂² = (x₁ + x₂)² - 2x₁ * x₂ = (- (m - 1))² - 2 * (m² - 1,5) = m² - 2m + 1 - 2m² + 3 = - m² - 2m + 4
Найдём производную полученного выражения :
(- m² - 2m + 4)'= -2m - 2
Приравняем к нулю и найдём нули производной :
- 2m - 2 = 0
m + 1 = 0
m = - 1
Отметим полученное число на числовой прямой и найдём знаки производной на промежутках, на которые разбивается числовая прямая :
+ -
- 1
↑ max ↓
ответ : при m = - 1 сумма корней уравнения наибольшая
К числителю прибавили 3, а к знаменателю 2, получим дробь: (x-3+3)/(x+2)=x/(x+2)
Составим уравнение:
х/(x+2)-(x-3)/x=7/40 (приведем к общему знаменателю х*(х+2)):
х*x-(x-3)(x+2)=7/40
(x²-x²+3x-2x+6)/x(x-2)=7/40
(x+6)/(x²+2x)=7/40
40*(x+6)/(x²+2x)=7
40x+240=7(x²+2x)
40x+240=7x²-14x
40x+240-7x²-14x=0
26x-240-7x²=0 (умножим на -1)
7x² -26x-240=0
D=b²-4ac=(-26)²+4*7*(-240)=676+6720=7396
x1=-b+√D/2a=-(-26)+√7396/2*7=26+86/14=8
x2=-b-√D/2a=-(-26)-√7396/2*7=26-86/14=-60/14 - не подходит
х – знаменатель дроби, х=8, тогда числитель х-3=8-4=5
дробь: 5/8
проверим: было 5/8, стало 8/10
8/10-5/8=(8*4-5*5)/40=7/40
ответ: 5/8