Пусть в 8а учится A учеников, в 8б учится B учеников. По условию, A+B=54. Пусть ученик из 8а дружит с учеником из 8б. Тогда у них есть дружественная двусторонняя связь. Это значит, что если учащийся x из 8а дружит с учащимся y из 8б, то и учащийся y из 8б дружит с учащимся x из 8а. Если рассматривать относительно 8а, то у каждого учащегося по 4 дружественных связей, то есть всего количество этих связей равно 4A. Если рассматривать относительно 8б, то у каждого учащегося по 5 дружественных связей, то есть всего количество этих связей равно 5B. Так как, как говорилось раньше, все связи двусторонние, то 4A=5B. Отсюда следует система уравнений: A+B=54, 4A-5B=0.
Пусть в 8а учится A учеников, в 8б учится B учеников. По условию, A+B=54. Пусть ученик из 8а дружит с учеником из 8б. Тогда у них есть дружественная двусторонняя связь. Это значит, что если учащийся x из 8а дружит с учащимся y из 8б, то и учащийся y из 8б дружит с учащимся x из 8а. Если рассматривать относительно 8а, то у каждого учащегося по 4 дружественных связей, то есть всего количество этих связей равно 4A. Если рассматривать относительно 8б, то у каждого учащегося по 5 дружественных связей, то есть всего количество этих связей равно 5B. Так как, как говорилось раньше, все связи двусторонние, то 4A=5B. Отсюда следует система уравнений: A+B=54, 4A-5B=0.
b1=1024
b2=512
q=b2/b1=1/2
S10=(b1*(1-q^10))/(1-q)=(1024*(1-1/1024))/(1-1/2)=2046