М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
matthewfeat
matthewfeat
04.02.2022 19:23 •  Алгебра

Масса одного кубического сантиметра свинца равна 11, 4г. Масса V cм3 свинца равна m​


Масса одного кубического сантиметра свинца равна 11, 4г. Масса V cм3 свинца равна m​

👇
Ответ:
DiliaSmail
DiliaSmail
04.02.2022

:ииттььь

4,5(24 оценок)
Открыть все ответы
Ответ:
angelinadvuradkina
angelinadvuradkina
04.02.2022
Знаешь, при подстановке не всегда хорошее уравнение получается, вряд ли ты умеешь такие решать, поэтому надо попробовать метод замены переменной. Например, xy=a, a^2-a=12; a^2-a-12=0; D=1-4*(-12)=49;
a= \frac{1б7}{2}; a_1=4; a_2=-3;, вот теперь мы можем заменить первое уравнение на более простое и решить 2 системы, объединив их решения. \left \{ {{xy=4} \atop {x=2-y}} \right. ; \left \{ {{x= \frac{4}{y} } \atop {x=2-y}} \right.; \frac{4}{y}=2-y; \frac{4-y(2-y)}{y}=0; y^2-2y+4=0; y \neq 0; D_1=1-4, корней нет. Решаем вторую систему: \left \{ {{xy=-3} \atop {x=2-y}} \right.; \left \{ {{x=- \frac{3}{y} } \atop {x=2-y}} \right.;- \frac{3}{y}=2-y; \frac{-3-y(2-y)}{y}=0; y^2-2y-3=0; y \neq 0; Здесь b=a+c (-2=1-3), тогда y_1=-1; y_2=- \frac{c}{a}=- \frac{-3}{1}=3;, а теперь в любое уравнение подставляем каждое из получившихся и в ответе пишем 2 точки: \left \{ {{y=-1} \atop {x=2-(-1)=3}} \right.; \left \{ {{y=3} \atop {x=2-3=-1}} \right. ;, получили точки (3;-1);(-1;3). Довольно похожие значения, объясняется это всё квадратами в первом уравнении системы. ответ:(3;-1);(-1;3).
4,5(89 оценок)
Ответ:
MrStepWay
MrStepWay
04.02.2022

Для решения запишем формулу бинома Ньютона:

(a+b)^n=a^n+C_n^1a^{n-1}b+C_n^2a^{n-2}b^2+...+b^n

Если а - слагаемое, содержащее неизвестную в наибольшей степени, то для определения степени результата нужно рассмотреть выражение a^n.

Если b - слагаемое, не содержащее неизвестную, то для определения свободного члена результата нужно рассмотреть выражение b^n.

Рассмотрим многочлен S(x)=P(x)\cdot Q(x), где:

P(x)=(3x^7+6x^4-1)^{12}

Q(x)=(5x^2+2)^3

Для определения степени и свободного члена произведения достаточно знать степень и свободный член каждого из множителей.

Для многочлена P(x)=(3x^7+6x^4-1)^{12}:

- степень определяется выражением (3x^7)^{12}=3^{12}\cdot x^{7\cdot12}=3^{12}\cdot x^{84}, то есть степень равна 84

- свободный член равен (-1)^{12}=1

Для многочлена Q(x)=(5x^2+2)^3:

- степень определяется выражением (5x^2)^3=5^3\cdot x^{2\cdot3}=125\cdot x^6, то есть степень равна 6

- свободный член равен 2^3=8

Наконец, для многочлена S(x)=P(x)\cdot Q(x) получим:

- степень определяется выражением x^{84}\cdot x^6=x^{84+6}=x^{90}, то есть степень равна 90

- свободный член равен 1\cdot8=8

Сумма степени и свободного члена многочлена S(x):

90+8=98

ответ: 98

4,5(17 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ