Число размещений из n элементов по 4 равно: A⁴n = n!/(n-4)!
Число размещений из n-2 элементов по 3 равно: A³n-2 = (n-2)!/(n-2 -3)! = (n-2)!/(n-5)!
A⁴n в 14 раз больше A ³n-2 => A⁴n : A³n-2 = 14
n!/(n-4)! : (n-2)!/(n-5)! = 14
n! * (n-5)! /(n-2)! *(n-4)! = 14
n! * 1*2*3*...*(n-5) / (n-2)! *1*2*3*...*(n-5)*(n-4) = 14 (сокращаем дробь на 1*2*3*...*(n-5) )
n! / (n-2)! *(n-4) = 14
1*2*3*..*(n-2)*(n-1)*n / 1*2*3*..*(n-2) *(n-4) = 14 (сокращаем дробь на 1*2*3*...*(n-2) )
(n-1)*n / (n-4) = 14 | *(n-4)
(n-1)*n = 14(n-4)
n² - n = 14 n - 56
n² - n - 14 n + 56 = 0
n² - 15 n + 56 = 0
D = 225 - 4*56 = 225 - 224 = 1
n₁= (15 + 1)/2 или n₂= (15 - 1)/2
n₁= 8 или n₂= 7
ответ: 7 ; 8.
№ 1. (8 4/5 - 13,8 : 3 5/6) · 12/13 = 4 целых 4/5 = 4,8.
1) 13,8 : 3 5/6 = 138/10 : 23/6 = 69/5 · 6/23 = (3·6)/(5·1) = 18/5 = 3 3/5
2) 8 4/5 - 3 3/5 = 5 1/5 = 26/5
3) 26/5 · 12/13 = (2·12)/(5·1) = 24/5 = 4 4/5 = 4,8
№ 2. 1 - 0,15 : (11/12 - 0,75) = 0,1.
1) 11/12 - 0,75 = 11/12 - 3/4 = 11/12 - 9/12 = 2/12 = 1/6
2) 0,15 : 1/6 = 3/20 · 6/1 = (3·3)/(10·1) = 9/10 = 0,9
3) 1 - 0,9 = 0,1
№ 3. 8,3 - (3 5/12 - 1 1/3) : 5/12 = 3,3.
1) 3 5/12 - 1 1/3 = 3 5/12 - 1 4/12 = 2 1/12 = 25/12
2) 25/12 : 5/12 = 25/12 · 12/5 = 25/5 = 5
3) 8,3 - 5 = 3,3