М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
btsakhaev
btsakhaev
13.10.2021 21:11 •  Алгебра

Найдите периметр треугольника abc , если ab+bc=27см, ab+ac=28см, bc+ac=29см.

👇
Ответ:
NeznaykaVshkole
NeznaykaVshkole
13.10.2021

AB+BC=27, AB+AC=28, BC+AC=29
AB+BC+AB+AC+BC+AC=27+28+29
2AB+2BC+2AC=84
AB+BC+AC=42
P(ABC)=42см^2 

4,4(97 оценок)
Ответ:
schooll2
schooll2
13.10.2021

Как известно, периметр это сумма всех сторон, т.е. AB + BC + AC

из второго уравнения выделим АС . АС = 28 - AB

подставим в третье. получится

BC + 28 - AB = 29

BC = AB + 1

теперь подставляем в первое. получим

AB + AB + 1 = 27

2AB = 26

AB = 13 см.

следовательно, BC = 14 см.

тогда AC = 28 - AB = 15 см.

Периметр = 14 + 15 + 13 = 42см

4,7(33 оценок)
Открыть все ответы
Ответ:
Пакмен007
Пакмен007
13.10.2021

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

4,6(78 оценок)
Ответ:
sashazhuravleva
sashazhuravleva
13.10.2021
(а+1)во 2 степени-(2а+3)во 2 степени=0
Нужно раскрыть скобки по формулам сокращенного умножения 
Сначала раскроем (а+1)во второй степени,получится 
а в квадрате +2а+1
Дальше рассмотрим оставшиеся,то есть -(2а+3)во второй степени
-(4а в квадрате +12а+9 )
Раскроем скобки и получится
-4а в квадрате -12а-9 
В итоге получилось 
а в квадрате +2а+1-4а в квадрате -12а-9 
Находим подобные и получается
-3 а в квадрате -10 а -8=0
Теперь решаем дискриминантом 
Д(дискриминант)=корню из четырех ,то есть двум
А1= -2 целые одна третья 
А2= -1

Второе уравнение решается аналогично 
25 с в квадрате +80с +64 -с в квадрате +20с-100=0
Что-бы было удобней вычитать Д сократим все на два,и получится
6с в квадрате+25с-9=0
Д=корень из 841 =29
С1=1/3
С2=11/3=3 целых 2/3
4,4(61 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ