М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ирка137
ирка137
27.09.2022 00:08 •  Алгебра

4^-3 * 4^- 5 / 2^-20 найти значение выражения ^ это степень

👇
Ответ:
daniilkrkrahmal
daniilkrkrahmal
27.09.2022
-2400 наверно
4,6(68 оценок)
Открыть все ответы
Ответ:
2йошник
2йошник
27.09.2022

Объяснение:

  1 .  ( x² - x )/3 = ( 2x + 4 )/5 ; │X 15   2 . ( 2x² + x )/5 = ( 4x - 2 )/3 ;│X 15

      5( x² - x ) = 3( 2x + 4 ) ;                    3( 2x² + x ) = 5( 4x - 2 ) ;    

      5x² - 5x = 6x + 12 ;                          6x² + 3x = 20x - 10 ;

      5x² - 5x - 6x - 12 = 0 ;                     6x² + 3x - 20x + 10 = 0 ;

      5x² - 11x - 12 = 0 ;                            6x² - 17x + 10 = 0 ;

D = 361 > 0 ; x₁ = - 0,8 ; x₂ = 3 .          D = 49 > 0 ;  x₁ = 5/6 ;   x₂ = 12/13 .

  3 . ( x² - x )/2 = 5 + 6x ;│X 2

         x² - x  = 10 + 12x ;

         x² - x - 12x - 10 = 0 ;

x² - 13x - 10 = 0 ;  D = 209 > 0 ; x₁= (13 - √209 )/2 ; x₂ = (13 - √209 )/2 .


Умножь обе части уравнения на общий знаменатель дробей, приведи квадратное уравнение к стандартному
Умножь обе части уравнения на общий знаменатель дробей, приведи квадратное уравнение к стандартному
Умножь обе части уравнения на общий знаменатель дробей, приведи квадратное уравнение к стандартному
4,8(33 оценок)
Ответ:
нет169
нет169
27.09.2022
1) xy'+y=0
Разрешим наше дифференциальное уравнение относительно производной
y'=- \dfrac{y}{x} - уравнение с разделяющимися переменными
Воспользуемся определением дифференциала
\dfrac{dy}{dx} =- \dfrac{y}{x} \\ \\ \dfrac{dy}{y} =- \dfrac{dx}{x}
Интегрируя обе части уравнения, получаем
\ln|y|=\ln| \frac{1}{x} |+\ln C\\ \\ \ln|y|=\ln| \frac{C}{x}|
y= \dfrac{C}{x}- общее решение

(1-x^2) \frac{dx}{dy} +xy=0\\ \\ (1-x^2) \frac{dx}{dy} =-xy
Разделяем переменные
\dfrac{(x^2-1)dx}{x} = ydy

интегрируя обе части уравнения, получаем

-\ln|x|+ \dfrac{x^2}{2} = \dfrac{y^2}{2} +C - общий интеграл

Решение задачи Коши нет, т.к. при х=0 логарифм ln0 не существует

Пример 3. x^2+y^2-2xy\cdot y'=0
Убедимся, является ли дифференциальное уравнение однородным.
(\lambda x)^2+(\lambda y)^2-2\cdot\lambda x\cdot \lambda y\cdot y'=0 |:\lambda^2\\ \\ x^2+y^2-2xyy'=0

Итак, дифференциальное уравнение является однородным.
Исходное уравнение будет уравнением с разделяющимися переменными если сделаем замену 
y=ux, тогда y'=u'x+u

Подставляем в исходное уравнение

x^2+u^2x^2-2x\cdot ux(u'x+u)=0\\ \\ x^2(1+u^2-2uu'x-2u^2)=0\\ \\ x=0\\ \\ 1-u^2-2uu'x=0\\ \\ u'= \dfrac{1-u^2}{2ux}

Получили уравнение с разделяющимися переменными

Воспользуемся определением дифференциала

\dfrac{du}{dx} =\dfrac{1-u^2}{2ux}

Разделяем переменные

\dfrac{du^2}{1-u^2} = \dfrac{dx}{x}

Интегрируя обе части уравнения, получаем

\ln\bigg| \dfrac{1}{1-u^2} \bigg|=\ln|Cx|

\dfrac{1}{1-u^2} =Cx

Обратная замена

\dfrac{x^2}{x^2-y^2} =Cx - общий интеграл

Пример 4. y''-4y'+4=0
Это дифференциальное уравнение второго порядка с постоянными коэффициентами также однородное.
Воспользуемся методом Эйлера
Пусть y'=e^{kx}, тогда будем иметь характеристическое уравнение следующего вида:
k^2-4k+4=0\\ (k-2)^2=0\\ k_{1,2}=2

Тогда общее решение будет иметь вид:

y=C_1y_1+C_2y_2=C_1e^{2x}+C_2xe^{2x} - общее решение

Пример 5. y''+4y'-5y=0
Аналогично с примером 4)
Пусть y=e^{kx}, тогда получаем
k^2+4k-5=0\\ (k+2)^2-9=0\\ \\ k+2=\pm 3\\ k_1=1\\ k_2=-5

Общее решение: y=C_1e^{x}+C_2e^{-5x}

Найдем производную функции
y'=C_1e^x-5C_2e^{-5x}

Подставим начальные условия

\displaystyle \left \{ {{4=C_1+C_2} \atop {2=C_1-5C_2}} \right. \to \left \{ {{C_1=4-C_2} \atop {2=4-C_2-5C_2}} \right. \to \left \{ {{C_1= \frac{11}{3} } \atop {C_2=\frac{1}{3} }} \right.

y=\frac{11}{3} e^x+\frac{1}{3} e^{-5x} - частное решение
4,4(77 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ