Искомая функция
.
Найдем значения искомой функции в заданных точках х:





Кроме этого, для каждого из аргументов есть еще и экспериментальное значение, которое обозначим через функцию
:

Составим функцию
, которая будет суммировать квадраты разностей значений функций
и
соответствующих аргументов:

Исследуем эту функцию на экстремум.
Найдем частные производные:






Необходимое условие экстремума: равенство нулю частных производных:

Домножим второе уравнение на (-3):

Складываем уравнения:


Подставим значение а во второе уравнение исходной системы:




Точка (0.5; -0.3) - предполагаемая точка экстремума.
Найдем вторые частные производные функции:



Рассмотрим выражение:

Так как
и
, то точка (0.5; -0.3) является точкой минимума.
Значит, в точке (0.5; -0.3) функция
имеет минимум.
Тогда, значения
и
есть искомые коэффициенты функции
.

ответ: 


Объяснение:
a)x⁴×x²×x⁸=
×x⁸=
б)(-2х)² :(-2х)³ :(-2х)⁴=(-2x
=1/(-2x
=1/-32
=-1/32
в)7⁹× (7²): 7¹⁹=
=1/
г)16²× 8 : 2⁷=2⁸×2³:2⁷=2⁴