Соотношение параметров квадрата
Приведём формулы периметра Р и площади S квадрата через длину стороны а.
периметр квадрата Р равен учетверённому размеру его стороны а: Р = 4 * а;
площадь квадрата S равна квадрату его стороны а: S = a²;
периметр и площадь квадрата связаны между собой. так как в их формулах общий параметр - сторона квадрата: S = P² / 16.
Для понятного объяснения задачи увеличим по заданию его сторону в 3 раза.Тогда новая сторона квадрата станет а1 = 3 * а.
Вычисление увеличения периметра и площади квадрата
Чтобы узнать, как при этом изменились периметр и площадь квадрата, подставим в формулы Р и S вместо "а" новое значение стороны "а1". Тогда:
Р1 = 4 * а1 = 4 * (3 * а ) = 12 * а;
S1 = а1² = (3 * а)² = 9 * а².
После того, как выразили новый периметр Р1 и площадь S1 через начальное значение стороны "а", можно ответить на вопрос задания:
для вычислений используем написанные выше формулы для площади S и периметра P;
чтобы узнать, во сколько раз увеличится периметр квадрата, нужно разделить Р1 на Р;
чтобы узнать, во сколько раз увеличится площадь квадрата, нужно разделить S1 на S.
Согласно выше сказанного, ответим на вопросы задания:
во сколько раз увеличился периметр квадрата, для чего разделим (Р1 : Р) = (12 * а) : (4 * а) = 3 (раза);
во сколько раз увеличится площадь квадрата, для чего разделим (S1 : S) = (9 * а²) : (а²) = 9 (раз).
заметим, что если периметр квадрата увеличился в 3 раза, как и сторона квадрата, то площадь, увеличивается в (3)² = 9 раз.
ответ: периметр увеличится в 3 раза, площадь увеличится в 9 раз.
x²-x-6≥0 (х-3)(х+2)≥0 Нули: 3; -2
x²-4x<0 х(х-4)<0 Нули: 0; 4
+ -2 - 3 +
●●> x²-x-6≥0
I I
I I
I I
оо> x²-4x<0
+ 0 - 4 +
3≤х<4
хє[3;4)
Объяснение:
как-то так
1) - (12 - b) - 23 = - 12 + b - 23 = - 35 + b
2) - 2,11x + 7,7x - 19,4x = - 13,81x
3) - 7(4 - b) + 3(- 2b - 2) - 7(- 8 + b) = - 28 + 7b - 6b - 6 + 56 - 7b = 22 - 6b
4) 11 * (5 - t) = 55 - 11t
5) - 15,76 - ( - 34,5) - 24,78 - ( - 4,34) + (- 81,51) =
= - 15,76 + 34,5 - 24,78 + 4,34 - 81,51 = - 83,21