ответ:
решаем:
а) 2x + 3y = 16
3x - 2y = 11
из 1-го ур-ния y = (16 - 2x) / 3
подставляем во 2-е
3x - 2*(16 - 2x) / 3 = 11
9x - 32 + 4x = 33
13x = 65, x = 5, y = (16 - 2x) / 3 = 2
ответ: x = 5, y = 2
б) 6(x + y) = 5 - (2x + y)
3x - 2y = -3 (или -3 -3 = -6, уточни)
из 2-го у = (3х + 3) / 2
6(x + (3х + 3) / 2) = 5 - (2x + (3х + 3) / 2)
6(5x + 3) / 2 = 5 - (7x + 3) / 2
6(5x + 3) = 10 - (7x + 3)
30x + 18 = 10 - 7x - 3
37x = -11, x = -11/37, y = (3х + 3) / 2 = (-33+111) / (2*37) = 78 / (2*37) = 39/37
ответ: x = -11/37, y = 39/37
в) 2x + 3y = 3
5x - 4y = 19
y = (3 - 2x) / 3
5x - 4(3 - 2x) / 3 = 19
15x - 12 + 8x = 57
23x = 69, x = 3
y = (3 - 2x) / 3 = (3 - 6) / 3 = -1
ответ: x = 3, y = -1
г) 3x + 2y = 6
5x + 6y = -2
y = (6 - 3x) / 2
5x + 6(6 - 3x) / 2 = -2
5x + 3(6 - 3x) = -2
5x + 18 - 9x = -2
4x = 20, x = 5
y = (6 - 3x) / 2 = (6 - 15) / 2 = -9/2
ответ: x = 5, y = -4,5
объяснение:
x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
Объяснение:
v если это арифметический корень, то выражение смысл имеет.