Степенью многочлена от нескольких переменных называют наивысшую степень входящих в него одночленов.
Степень одночлена стандартного вида – это сумма показателей степеней всех переменных, входящих в его запись; если в записи одночлена нет переменных, и он отличен от нуля, то его степень считается равной нулю; число нуль считается одночленом, степень которого не определена.
Степень первого одночлена – 5 х у^4 – 1 + 4 = 5
Степень второго одночлена – х^2у^2 – 2 + 2 = 4
Степень третьего многочлена – 2х+у – 1 + 1
5 > 4 > 1, степень первого одночлена больше остальных, а значит, будет являться и степенью всего многочлена.
ответ: 5.
x^2+3xy-8y^2=x^2-xy-4y^2
перенесём всё влево:
x^2+3xy-8y^2-x^2+xy+4y^2=0
x^2 сокращается; остаётся:
3xy+xy-8y^2+4y^2=0
4xy-4y^2=0
4y можно вынести:
4y(x-y)=0
То есть 4y=0, следовательно y=0
И x-y=0, следовательно x=y
теперь подставляем эти "ответы в первое или второе уравнение (неважно)
Сначала вместо y будем ставить 0:
x^2+3x*0-8*0^2=-1
x^2=-1 такого быть не может (когда что-то в квадрат возносим получается положительное число)
Теперь вместо y будем подставлять x (x=y)
x^2+3x^2-8x^2=-1
-4x^2=-1
x^2=1/4
x1=1/2 и y1=1/2
x2=-1/2 и y2=-1/2
ответ: (1/2;1/2) и (-1/2;-1/2)