В решении.
Объяснение:
С графика функции y=x² (рис. 6) найдите приближенные значения корней уравнения:
а) х²= 2;
Поскольку у=х², а х²=2, значит, нужно искать значение х при у=2.
Из точки оси Оу у=2 проводим перпендикуляр вправо, до пересечения с графиком, потом из точки пересечения опускаем перпендикуляр вниз, до оси Ох. Это и будет искомое значение х.
х ≈ 1,4;
б) х² = 7;
Здесь из точки у=7 на оси Оу проводим перпендикуляр вправо, до пересечения с графиком, потом из точки пересечения опускаем перпендикуляр вниз, до оси Ох. Это и будет искомое значение х.
х ≈ 2,6;
в) х² = 5,5
Здесь из точки у=5,5 на оси Оу проводим перпендикуляр вправо, до пересечения с графиком, потом из точки пересечения опускаем перпендикуляр вниз, до оси Ох. Это и будет искомое значение х.
х ≈ 2,3.
2/cos²(2x)
Объяснение:
1/3 вынесем как константу
а тангенс в кубе от двух икс это сложная функция, производная сложной функции находится как производная внешней функции умножить на производную внутренней, а у нас 2 внешних, т.е. сначала степенная( в кубе), затем от тригонометрической функции(тангенс), затем от аргумента(2х).
Начнем с внешней функции, производная внешней функции (p³)'=3p²
1/3(3*tg²(2x), теперь производная от тангенса она равна 1/cos²(2x)
1/3 и 3 сократились, остается
1/cos²(2x) умножить на производную 2х равную 2
Окончательный ответ
2/cos²(2x)
Объяснение:
y = -6×(-5)-15
y = 30-15
y = 15