1)31 (км/час) скорость лодки в стоячей воде.
2)54,4 (км) до места встречи пройдёт лодка, плывущая по течению.
3)44,8 (км) до места встречи пройдёт лодка, плывущая против течения.
Объяснение:
Расстояние между двумя пристанями равно 99,2 км. Из них одновременно навстречу друг другу вышли две лодки, скорости которых в стоячей воде равны. Через 1,6 ч. лодки встретились. Скорость течения реки равна 3 км/ч.
1)Скорость лодки в стоячей воде?
2)Сколько километров до места встречи пройдёт лодка, плывущая по течению?
3)Сколько километров до места встречи пройдёт лодка, плывущая против течения?
х - скорость лодки в стоячей воде
х+3 - скорость лодки по течению
х-3 - скорость лодки против течения
Формула движения: S=v*t
S - расстояние v - скорость t - время
Согласно условию задачи составляем уравнение:
(х+3)*1,6+(х-3)*1,6=99,2
Разделим уравнение на 1,6 для упрощения:
(х+3)+(х-3)=62
Раскроем скобки:
х+3+х-3=62
2х=62
х=31 (км/час) скорость лодки в стоячей воде.
(31+3)*1,6=54,4 (км) до места встречи пройдёт лодка, плывущая по течению.
(31-3)*1,6=44,8 (км) до места встречи пройдёт лодка, плывущая против течения.
4
Объяснение:
1) Если две стороны треугольника равны 3 и 5, то его третья сторона больше 3.
Пусть а третья сторона, то по неравенству треугольника сумма любых двух сторон больше третьей стороны:
а+3>5
a+5>3 - выполнено
3+5>a
Тогда 3+5=8>а>5-3=2, и достаточно а>2, например а=2,1. Поэтому утверждение НЕВЕРНО!
2) Внешний угол треугольника равен сумме двух его внутренних углов.
Утверждение НЕВЕРНО, так как внешний угол треугольника равен сумме его внутренних, не смежных с ним, углов.
3) Если две стороны и угол одного треугольника соответственно равны двум сторонам и углу другого треугольника, то такие треугольники равны.
Утверждение НЕВЕРНО, так как по первому признаку равенства треугольников необходимо "угол между ними".
4) Если две стороны треугольника равны 3 и 4, то его третья сторона меньше 7.
Пусть а третья сторона, то по неравенству треугольника сумма любых двух сторон больше третьей стороны:
а+3>4
a+4>3 - выполнено
3+4>a
Тогда 3+4=7>а>4-3=1, и поэтому утверждение ВЕРНО.