1) Введем функцию: f(x)=(х∧2+2х+1)(х-3)(х+2)÷х∧2+2х-3, f(x)=0, (х∧2+2х+1)(х-3)(х+2)÷х∧2+2х-3=0 2) Найдем нули числителя и знаменателя: Числитель: -Все скобки приравниваем к нулю: х∧2+2х+1=0 D<0, f(x)>0 х-любое число x-3=0 x=3 x+2=0 x=-2 Расставляем полученные числа на числовую прямую, нам нужен промежуток с плюсом, т.к. в условии функция >0, получаем х принадлежит(-бесконечности; 2),(3; до +бесконечности), Знаменатель: х∧2+2х-3 не равно 0 D=16 x=-3 x=1 Так же на числовой прямой расставляем полученные корни, получаем х принадлежит (-бесконечности; -3),(1; + бесконечности) Сопоставляем полученные промежутки на общую числовую прямую, получаем конечный ответ х принадлежит (-бесконечности; -3),(3; + бесконечности)
9x2 + 3x; б) 6xy +3x2y – 12xy2
2°. Разложите на множители:
а) y(у – 1) + 2(y – 1); б) x2 – 64.
3°. Сократите дробь (x^2+ 3x)/(3a+ax).
4°. У выражение (а – b)2 – (а – b)(а + b).
5°. Решите уравнение x2 + 7x = 0.
6 У выражение: с(с – 2)(с + 2) – (с – 1)(с2 + с + 1).
7 Найдите корни уравнения 3x3 – 27x = 0.
8 Разложите на множители многочлен 2х + 2у – х2 – 2ху – у2.
2 вариант.
1°. Вынесите общий множитель за скобки:
а) 2ab – ab2; б) 5a4 – 10a3 + 10a2
2°. Разложите на множители:
а) ax – ay + 2x – 2y; б) 9a2 – 16b2.
3°. Сократите дробь (2a+4)/(a^(2 )- 4).
4°. У выражение (x – 1) (x + 1) – x(x – 3).
5°. Решите уравнение x2 – 25 = 0.
6 У выражение: (х + 1)(х2 + х + 1)
Объяснение: