М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
maximborisoc
maximborisoc
01.04.2023 00:46 •  Алгебра

Подайте у вигляді добутку многочленів вираз: x(b+c) +3b+3c

👇
Ответ:
lenaglukhova20
lenaglukhova20
01.04.2023

xb+xc+3v+3c

Объяснение:

Вроде бы так

4,5(24 оценок)
Открыть все ответы
Ответ:
курлык35
курлык35
01.04.2023
Y= 2x³ -1     d(f) = (-∞;   +∞)     e(f) = (-∞; +∞) точки   пересечения   с oy :   y = 2·0³ -1 = -1       :   a(0; -1) точки   пересечения   с ox :   2x³ -1 =0     ⇒     x³ -(∛1/2)³=0     (x-∛1/2)[x²+∛1/2  ·x +(∛1/2)²]=0       a) x=∛1/2       ⇒ b(∛1/2 ; 0       b)   x²+∛1/2  ·x +(∛1/2)²=0           x=[ -∛1/2 +/-  √[(∛1/2)² -4(∛1/2)²]   ;   d= -3(∛1/2)²< 0  ⇒                     нет пересечений     кроме   точки   b(∛1/2 ; 0)   точки   экстремума   : f'(x) = 0        6x²=0   ⇒ x=0         ⇒ y=2·0 -1=1   график :   кубическая   парабола   пересекая   координаты   в   точках         а(0; -1) и в(∛1/2 ; 0)
4,8(69 оценок)
Ответ:
Kracylia
Kracylia
01.04.2023

\sqrt{x} \cdot \sqrt{x+2} =a-1

Так как в уравнении есть квадратные корни, то запишем ОДЗ:

\begin{cases} x \geqslant 0\\ x+2\geqslant 0 \end{cases}\Rightarrow x\geqslant 0

Также заметим, что в левой части записано произведение двух неотрицательных выражений. Значит, правая часть уравнения также неотрицательна:

a-1\geqslant 0

a\geqslant 1

Таким образом, при a уравнение не имеет корней.

Предположим, что a\geqslant 1. Тогда:

(\sqrt{x} \cdot \sqrt{x+2})^2 =(a-1)^2

x(x+2) =(a-1)^2

x^2+2x -(a-1)^2=0

D_1=1^2-1\cdot(-(a-1)^2)=1+(a-1)^2

x=-1\pm\sqrt{1+(a-1)^2}

Проверим, удовлетворяют ли найденные корни ОДЗ.

Для первого корня получим:

-1-\sqrt{1+(a-1)^2}\geqslant 0

-\sqrt{1+(a-1)^2}\geqslant 1

\sqrt{1+(a-1)^2}\leqslant- 1

Однако, квадратный корень не может принимать отрицательных значений. Значит, рассматриваемое выражение не является корнем уравнения ни при каких значениях параметра a.

Для второго корня получим:

-1+\sqrt{1+(a-1)^2}\geqslant 0

\sqrt{1+(a-1)^2}\geqslant 1

1+(a-1)^2\geqslant 1

(a-1)^2\geqslant 0

Последнее условие выполняется при любых значениях параметра a. Но как отмечалось ранее, уравнение может иметь корни только при a\geqslant 1. Значит, данное выражение является корнем уравнения при a\geqslant 1.

при a: нет корней,

при a\geqslant 1: x=-1+\sqrt{1+(a-1)^2}

4,6(29 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ