2
y=√(x−3)−|x+1|
одз: х>=3
y'=1/(2√(x−3))-sgn(x+1)
1/(2√(x−3))-sgn(x+1)=0
при х>=3 sgn(x+1) =1
1/(2√(x−3))-1=0
2√(x−3)=1
√(x−3)=1/2
x−3=1/4
х=3+1/4
y(3+1/4)=√(3+1/4−3)−|3+1/4+1|=√(1/4)−|4+1/4|=1/2−4-1/4=-3-3/4
ответ: -3-3/4
PS
находим наибольшее, потому как наименьшего не существует
пример при х=3 получится 0-4=-4 - еще меньше, но среди вариантов такого нет
и вообще при стремлении х к бесконечности линейная функция убывает быстрее чем растет корень, поэтому наименьшего на самом деле нет, а
-3-3/4 - наибольшее
3
по условию
3р2=р1+р3+р4
4р1=р2+р3+р4
р1+р2=1/11
р3+р4=-найти
от второго уравнения отнимаем первое
4р1-3р2=р2-р1
5р1=4р2
р1=0,8р2
р1+р2=0,8р2+р2=1,8р2
но р1+р2 известно по условию
1,8р2=1/11
р2=1/(1,8*11)=5/99
р1=0,8*5/99=4/99
р3+р4=3р2-р1=3*5/99-4/99=15/99-4/99=11/99=1/9
суммарная производительность 1/9 тогда времени - 9 дней
ответ: 9 дней
x(5x + 7) = 0
Произведение равно 0,когда один из множителей равен 0,значит,
x = 0
5x +7 = 0
5x = - 7
x = - 7/5
x = - 1,4
ответ: x = 0, x = - 1,4.
2) 2x - 5x² = 0
x ( 2 - 5x) = 0
x = 0
2 - 5x = 0
- 5x = - 2
5x = 2
x = 2/5
x = 0,4
ответ: x = 0, x = 0,4.
3) 4m² - 3m = 0
m( 4m- 3) = 0
m = 0
4m - 3 = 0
4m = 3
m = 3/4
m = 0,75
ответ: m = 0, m = 0,75.
4) y² - 2y - 8 = 2y - 8
y² - 2y - 2y - 8 + 8 = 0
y² - 4y = 0
y(y - 4) = 0
y = 0
y - 4 = 0
y = 4
ответ: y = 0, y = 4.
5) 3u² + 7 = 6u + 7
3u² - 6u + 7 - 7 = 0
3u² - 6u = 0
3u(u - 2) = 0
3u = 0
u = 0/3
u = 0
u - 2 = 0
u = 2
ответ: u = 0, u = 2.