ответ. В каждом размере либо левых и правых поровну, либо каких-то больше. Если левых и правых поровну, то их по 50 – вот мы и нашли 50 годных пар. Пусть в каждом размере или левых или правых больше. Можно считать, что в двух размерах больше левых, а в еще одном больше правых. (Во всех трех размерах левых быть больше не может, так как всего левых и правых сапог поровну). Введем обозначения, пусть в первых двух размерах правых A и B, а левых тогда 100-A и 100-B. В третьем размере левых C, а правых 100-С. Так как в первых двух размерах правых меньше, то там можно найти соответственно A и B пар, а в третьем размере левых меньше, значит там C годных пар. Мы еще не воспользовались условием, что всего 150 правых сапог. Это условие означает, что A+B+(100-C)=150, Откуда A+B=50+C50. Значит, всего пар годных сапог будет A+B+CA+B50.
Я так думаю, здесь всё объединено?! Короче, попробуем решить алгебраическим это когда первый пример + второй пример). Для этого, умножим первый пример на -1 {y - x = 9 |*(-1) {7y - x = - 3 Получаем: { -у +х = -9 { 7у - х = -3 Условно ставим между этими примерами знак "+", крч прибавляем. Т.к. значения х (иксов) противоположные - они само-уничтожаются. Выходит: 6у = -12 у = -12 : 6 у = -2 Ура! Нашли значение у (игрика), теперь просто подставляешь это значение в любой пример и находишь х (икс). Например, в первый пример: {у - х = 9 {у = -2 -2 - х = 9 -х = 9+2 {х = -11 {у= -2 ответ: (-11; - 2) P.S. пыталась максимально доступно объяснить.
а)5ka-5kb+ma-mb
б)x^2+4x+4-3x-6
в)xp+xq-p-q
г)m^2-mn-m^2+2mn-n^2=mn-n^2
2
а)х (y-3x^2)
б)k^2(k-1 (k-1)
в)4q(pq+3)
г)7ab(3ab^2-2+b)
думаю так