На одной автостоянке было в 4 раз(-а) меньше машин, чем на другой. Когда со второй стоянки на первую перевели 72 автомобилей(-я), машин на стоянках стало поровну. Какое количество машин было на каждой стоянке первоначально? РЕШИТЬ УРАВНЕНИЕМ
Решается методом введения вс угла. Для этого надо сначала найти число,на которое будем делить все уравнение. Оно находится по формуле: квадратный корень из суммы квадратов коэффициентов перед синусом и косинусом. Так как эти коэффициенты равны единицам, то число, на которое будем делить все уравнение равно корню из двух. Теперь справа получим корень из трех, деленный на два, а слева перед синусом и косинусом получим коэффициенты единица, деленная на корень из двух. Эти коэффициенты после избавления от иррациональности примут вид: корень из двух, деленный на два. Тот из них, оторый стоит перед синусом, примем за косинус угла фи, а тот, который стоит перед косинусом - за синус угла фи. Получим:cos F * sin 5x - sin F * cos 5x = \sqrt{3} / 2Левую часть соберем по формуле синус разности двух углов. Получим:sin (5x - F) = \sqrt{3} / 2 Далее как простейшее тригонометрическое уравнение
Если число (обозначим его А) даёт такие остатки, то его можно выразить двумя случаями: 1) A=9*x+1 2) A=9*x+8 Возведём в квадрат оба случая: 1) A^2 = (9x+1)^2 = 81*x^2 + 2*9*x + 1 = 81*x^2 + 18*x + 1 2) A^2 = (9x+8)^2 = 81*x^2 + 2*8*9*x+64 = 81*x^2 + 144*x+64 Теперь преобразуем эти записи так, чтобы увидеть, какая часть из них делится на 9, а какая нет: 1) 81*x^2 + 18*x + 1 = 9*(9*x^2+2*x) + 1 2) 81*x^2 + 144*x+ 64 = 9*(9*x^2+16*x)+63 +1 = 9*(9*x^2+16*x+7) +1 Мы видим, что в обоих случаях квадрат записывается в виде 9*выражение+1 = а значит, остаток от деления квадрата на 9 будет равен 1.
Объяснение:
x=4x
x+72=4x-72
x-4x=3x
3x= 72
x= 24