М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sarababy777
sarababy777
18.02.2021 09:10 •  Алгебра

Приведите к стандартному виду уравнение и выпишите коэффициенты.
а) 7-3y+5x=0
б) 17+2y=6x+17

👇
Открыть все ответы
Ответ:
Kracylia
Kracylia
18.02.2021

\sqrt{x} \cdot \sqrt{x+2} =a-1

Так как в уравнении есть квадратные корни, то запишем ОДЗ:

\begin{cases} x \geqslant 0\\ x+2\geqslant 0 \end{cases}\Rightarrow x\geqslant 0

Также заметим, что в левой части записано произведение двух неотрицательных выражений. Значит, правая часть уравнения также неотрицательна:

a-1\geqslant 0

a\geqslant 1

Таким образом, при a уравнение не имеет корней.

Предположим, что a\geqslant 1. Тогда:

(\sqrt{x} \cdot \sqrt{x+2})^2 =(a-1)^2

x(x+2) =(a-1)^2

x^2+2x -(a-1)^2=0

D_1=1^2-1\cdot(-(a-1)^2)=1+(a-1)^2

x=-1\pm\sqrt{1+(a-1)^2}

Проверим, удовлетворяют ли найденные корни ОДЗ.

Для первого корня получим:

-1-\sqrt{1+(a-1)^2}\geqslant 0

-\sqrt{1+(a-1)^2}\geqslant 1

\sqrt{1+(a-1)^2}\leqslant- 1

Однако, квадратный корень не может принимать отрицательных значений. Значит, рассматриваемое выражение не является корнем уравнения ни при каких значениях параметра a.

Для второго корня получим:

-1+\sqrt{1+(a-1)^2}\geqslant 0

\sqrt{1+(a-1)^2}\geqslant 1

1+(a-1)^2\geqslant 1

(a-1)^2\geqslant 0

Последнее условие выполняется при любых значениях параметра a. Но как отмечалось ранее, уравнение может иметь корни только при a\geqslant 1. Значит, данное выражение является корнем уравнения при a\geqslant 1.

при a: нет корней,

при a\geqslant 1: x=-1+\sqrt{1+(a-1)^2}

4,6(29 оценок)
Ответ:
Мелочь83
Мелочь83
18.02.2021
Для любого неотрицательного выражения A:
\sqrt{A| \geq 0
(при отрицательном А не имеет смысла)
причем \sqrt{A}=0<=>A=0

сумма двух неотрицательных выражений равняется 0, если каждое из выражений равно 0, значит данное уравнение равносильно системе уравнений
x=0; x+1=0
которая очевидно не имеет корней (уравнения имеют разные корни)
а значит и исходное уравнение не имеет корней
-----------------------------------
иначе
в левой части возрастающая функция как сумма двух возрастающих (функция корня и суперпозиция возрастающих функций корня и линейной)
ОДЗ функции задающей левую часть
x \geq 0; x+1 \geq 0
x \geq 0
а значит
f(x)=\sqrt{x}+\sqrt{x+1} \geq f(0)=\sqrt{0}+\sqrt{1+0}=10
а значит данное уравнение не может иметь корней (левая часть заведомо больше правой)
-------------
иначе
\sqrt{x}=-\sqrt{x+1}
подносим обе части к квадрату
x=x+1
0x=1
решений нет(проверка не нужна так как не нашли корней)
ответ: данное уравнение корней не имеет
4,7(20 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ