М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
temik25527
temik25527
05.04.2023 17:56 •  Алгебра

Выполните Деление 1) 2/5x : (-2) 2) (-7m):(-7/9) 3) (-3/4a):(-8/9) 4) 16/25b:(4/5)

👇
Ответ:
logan323
logan323
05.04.2023

Объяснение:

1) 2/5x : (-2) =2/5х*(1/2)=1/5х

2) (-7m):(-7/9) =-7*(-9/7)=9

3) (-3/4a):(-8/9) =(-3/4а)*(-9/8)=

27/32а

4) 16/25b:(4/5)=16/25b*5/4=4/5b

4,6(73 оценок)
Открыть все ответы
Ответ:
store1488
store1488
05.04.2023
1. (x-3) (x+1) (x+4)<0
x=3  x=-1  x=-4
           _                  +                  _                  +
(-4)(-1)(3)
x∈(-∞;-4) U (-1;3)
2. 1/3 x^3 - 3х <= 0
1/3x(x²-9)≤0
1/3x(x-3)(x+3)≤0
x=0  x=3  x=-3
          _                  +                  _                  +
[-3][0][3]
x∈(-∞;-3] U [0;3]
3. (x^2+6x+9) (x^2-1) <= 0
(x+3)²(x-1)(x+1)≤0
x=-3  x=1  x=-1
      +                  +                  _                  +
[-3][-1][1]
x∈[-1;1] U {-3}
4. (x+2) (x-3) (x-4) / (x-2)^2 > 0
x=-2  x=3  x=4  x=2
      _                  +                  +                  _                +
(-2)(2)(3)(4)
x∈(-2;2) U (2;3) U (4;∞)
5. (x^2-x+3) (6x+1)^5 > 0
x²-x+3=0
D=1-12=-11<0⇒x²-x+3>0 при любом х⇒(6x+1)^5>0
6x+1>0⇒6x>-1⇒x>-1/6
x∈(-1/6;∞)
6. (3x-1) (x-2) (x+1) > 0
x=1/3    x=2    x=-1
      _                  +                      _                  +
(-1)(1/3)(2)
x∈(-1;1/3) U (2;∞)
7. (x^2-7x+12) (x^2-4) >= 0
x²-7x+12=0⇒x1+x2=7 U x1*x2=12⇒x1=3 U x2=4
x²-4=0⇒x²=4⇒x=-2 U x=2
         +                _                  +                  _                  +
[-2][2][3][4]
x∈(-∞;-2] U [2;3] U [4;∞)
8.( 9x^2+12x+4) / (x-6 )>= 0
(3x+2)²(x-6)≤0
x=-2/3  x=6
         _                  _                +
[2/3][6]
x∈[6;∞) U {2/3}
9. (x-3)^10 (x-1)^9 x^4(x+2)<=0
x=3  x=1  x=0  x=-2
       +            _                _          +              +
[-2][0][1][3]
x∈[-2;1] U {3}
10.( x^4-8x^2-9) / (x^3-1) <0
x^4-8x²-9=0
x²=a
a²-8a-9=0⇒a1+a2=8 U a1*a2=-9⇒a1=-1 U a2=9
(x²+1)(x²-9)/(x³-1)<0
(x²+1)(x-3)(x+3)/(x-1)(x²+x+1)<0
x²+1>0 при любом х и x²+x+1>0 при любом х⇒
(x-3)(x+3)/(x-1)<0
x=3  x=-3  x=1
      _                  +                  _                  +
(-3)(1)(3)
x∈(-∞;-3) U (1;3)
4,4(100 оценок)
Ответ:
Nika5647
Nika5647
05.04.2023
Будем считать, что они отвечают на тест с двумя вариантами ответа. (Иначе возникнет вопрос - сколько есть правильных и неправильных ответов, от этого будет зависеть ответ). Также считаем, что отвечают ученики независимо от учителя.

Пусть мальчиков M и девочек D. Тогда вероятность правильного ответа у случайно выбранного ученика равна p = M / (M + D) * beta + D / (M + D) * gamma.

Теперь будем решать такую задачу: учитель отвечает верно с вероятностью alpha, ученик отвечает верно с вероятностью p. Найти вероятность того, что они ответят одинаково. При каком p эта вероятность = 1/2?

Конечно, P(одинаково) = P(уч-к ошибся|уч-ль ошибся) + P(уч-к верно|уч-ль верно) = alpha p + (1 - alpha)(1 - p) = alpha p + 1 - alpha - p + alpha p = p(2alpha - 1) + (1 - alpha) = 1/2
p(2alpha - 1) = alpha - 1/2
p = 1/2 (*) или alpha = 1/2 (**)

(*)
M / (M + D) * beta + D / (M + D) * gamma = 1/2
M beta + D gamma = 1/2 (M + D)
M/D beta + gamma = 1/2 M/D + 1/2
M/D (beta - 1/2) = 1/2 - gamma
Если beta не равна 1/2, ответ
M/D = (1 - 2gamma)/(2beta - 1)
Если beta = gamma = 1/2, то M/D - любое.
Если beta = 1/2 и gamma != 12, то M/D = infty, т.е. D = 0 и M != 0.

(**) Если alpha = 1/2, то p может принимать любые значения, тогда ничего узнать не удастся.

ответ. Если alpha = 1/2 или beta = gamma = 1/2, то отношение может быть любым, иначе оно равно (1 - 2gamma))/(2beta - 1)
4,4(17 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ