Диаграмма Венна (также используется название диаграмма Эйлера — Венна) — схематичное изображение всех возможных отношений (объединение, пересечение, разность, симметрическая разность) нескольких (часто — трёх) подмножеств универсального множества. На диаграммах Венна универсальное множество {\displaystyle U}U изображается множеством точек некоторого прямоугольника, в котором располагаются в виде кругов или других простых фигур все остальные рассматриваемые множества[1][2].
Диаграммы Венна применяются при решении задач вывода логических следствий из посылок, выразимых на языке формул классического исчисления высказываний и классического исчисления одноместных предикатов[3], для :
описания функционирования формальных нейронов Мак-Каллока и сетей из них[4]
синтеза надежных сетей из не вполне надежных элементов[5],
построения управляющих и самоуправляющихся систем и блочного анализа и синтеза сложных устройств[6],
получения логических следствий из заданной информации, минимизации формул исчислений[7][8].
Диаграммы Венна при {\displaystyle n}n фигур изображают все {\displaystyle 2^{n}}2^{n} комбинаций {\displaystyle n}n свойств, то есть конечную булеву алгебру[9]. При {\displaystyle n=3}n=3 диаграмма Эйлера — Венна обычно изображается в виде трёх кругов с центрами в вершинах равностороннего треугольника и одинаковым радиусом, приблизительно равным длине стороны треугольника.
Дальнейшим развитием аппарата диаграмм Венна в классическом исчислении высказываний является аппарат вероятностных диаграмм [10], понятие сети диаграмм, использующей диаграммы Венна как операторы[11].
Они появились в сочинениях английского логика Джона Венна (1834—1923), подробно изложившего их в книге «Символическая логика», изданной в Лондоне в 1881 году.
Катер проплыл по течению реки 24 км , и 48 км против течения реки, затратив на весь путь 4 часа. Найдите скорость катера по течению , если собственная скорость катера 20 км/ч.
Скорость течения - х км/ч. По течению: t₁ = 24 /(20+x) ч. Против течения: t₂= 48 / (20-x) ч. Время на весь путь: t₁+t₂=4 ч. Уравнение: 24/ (20+х) + 48/(20-х) = 4 |×(20+x)(20-x) 24(20-x) +48(20+x) = 4 (20+x)(20-x) |÷4 6(20-x) + 12(20+x) = (20+x)(20-x) 120-6x + 240 +12x= 400- x² 360 +6x -400+x²=0 x²+6x - 40=0 D= (6)² - 4* 1* (-40) = 36+160=196 ; √D=14 x₁= (-6-14) /2 =-20/2 =-10 - не удовл. условию задачи, т.к. скорость не может быть отрицательной величиной x₂= (-6+14)/2 = 8/2 =4 (км/ч) скорость течения реки 20+4 = 24 (км/ч) скорость катера по течению 20-4 = 16 (км/ч) скорость катера против течения реки проверим: 24/24 + 48/16 = 1+3 = 4 (ч.) на весь путь
Диаграмма Венна (также используется название диаграмма Эйлера — Венна) — схематичное изображение всех возможных отношений (объединение, пересечение, разность, симметрическая разность) нескольких (часто — трёх) подмножеств универсального множества. На диаграммах Венна универсальное множество {\displaystyle U}U изображается множеством точек некоторого прямоугольника, в котором располагаются в виде кругов или других простых фигур все остальные рассматриваемые множества[1][2].
Диаграммы Венна применяются при решении задач вывода логических следствий из посылок, выразимых на языке формул классического исчисления высказываний и классического исчисления одноместных предикатов[3], для :
описания функционирования формальных нейронов Мак-Каллока и сетей из них[4]
синтеза надежных сетей из не вполне надежных элементов[5],
построения управляющих и самоуправляющихся систем и блочного анализа и синтеза сложных устройств[6],
получения логических следствий из заданной информации, минимизации формул исчислений[7][8].
Диаграммы Венна при {\displaystyle n}n фигур изображают все {\displaystyle 2^{n}}2^{n} комбинаций {\displaystyle n}n свойств, то есть конечную булеву алгебру[9]. При {\displaystyle n=3}n=3 диаграмма Эйлера — Венна обычно изображается в виде трёх кругов с центрами в вершинах равностороннего треугольника и одинаковым радиусом, приблизительно равным длине стороны треугольника.
Дальнейшим развитием аппарата диаграмм Венна в классическом исчислении высказываний является аппарат вероятностных диаграмм [10], понятие сети диаграмм, использующей диаграммы Венна как операторы[11].
Они появились в сочинениях английского логика Джона Венна (1834—1923), подробно изложившего их в книге «Символическая логика», изданной в Лондоне в 1881 году.
Объяснение: