1.
На первое место можно выбрать любую из 11-ти команд на второе -любую из 10-ти оставшихся команд на третье -любую из 9-ти оставшихся команд Выбор и на первое и на второе и на третье место по правилу умножения три вершины - три места, на три места можно разместить три буквы Выложим все предметы в один ряд, добавим к ним 3 разделяющих предмета. Переставим всеми возможными данных одинаковых предметов и3 разделяющих. Каждая такая перестановка определяет один из распределения. А именно предметы, расположенные до первого разделителя, положим в первый ящик, предметы, расположенные между первым и вторым разделителем, – во второй ящик, между вторым и третьим разделителем во третий, предметы расположенные после 3-его разделителя – в 4-ый ящик. По формуле перестановок с повторениями
P(14,3)=С³₁₇=17!/((17-3)!·3!)=15·16·17/6=680
4.
n=20
делятся на 5:
5; 10; 15; 20 - четыре числа
делятся на 3:
3; 6; 9; 12; 15; 18 -шесть чисел
Делящихся на 5 или на 3
9 чисел ( 15 повторяется)
m=9
p=m/n=9/20
6.
Всего 10 цифр на два места их можно разместить четных цифр 5:
0;2;4;6;8
На одно место
любую из пяти цифр, на второе место - любую из пяти цифр
Всего шар в одном, два в другом и три в третьем
1шар можно разместить в любой из трех ящиков - три После этого два шара можно разместить в два оставшихся ящика, два Три шара осталось положить в третий ящик
2x^2 = -18 | (делим на 2)
X^2 = -9
X1 = 3 и x2 = -3
3) x^2 + x - 6 = 0
D = b^2 -4ac
D = 1^2 - 4*1*(-6) = 1 + 24 = 25
X1 = -1+ корень из 25/2 = -1+5/2 = 4/2 = 2
X2 = -1 - корень из 25/2 = -1 -5/2 = -6/2 = -3
4) так же ка второе
5) 4x^2 - 36 = 0 | делим все на 4
X^2 - 9 = 0
X^2 = 9
X = 3 и x2= -3
6) x^4 -25x +144 = 0
X = t (тут замена, вроде)
X^2 -25x + 144 = 0
D = (-25)^2 - 4*1*144 = 625 - 576 = 49
X1 = -(-25)+ корень из 49 = 25+7 = 32
X2= -(-25) - корень из 49 = 25 -7 = 18
Дальше нужно подставлять куда-то в замену вроде, я не помню