Каждое число от 1 до 27 встречается только в трех тройках подряд идущих чисел. Поэтому, как бы не были расположены числа по окружности, сумма чисел во всех таких тройках будет равна 3*(1+2+...+27)=3*(1+27)*27/2=1134. Если предположить, что сумма чисел в каждой такой тройке меньше 42 (т.е. не больше 41), то, поскольку имеется всего 27 троек подряд идущих чисел, общая сумма чисел в них не превосходила бы 41*27=1107, что меньше 1134. Противоречие. Значит обязательно есть тройка, в которой сумма чисел больше 41. Что и требовалось.
Каждое число от 1 до 27 встречается только в трех тройках подряд идущих чисел. Поэтому, как бы не были расположены числа по окружности, сумма чисел во всех таких тройках будет равна 3*(1+2+...+27)=3*(1+27)*27/2=1134. Если предположить, что сумма чисел в каждой такой тройке меньше 42 (т.е. не больше 41), то, поскольку имеется всего 27 троек подряд идущих чисел, общая сумма чисел в них не превосходила бы 41*27=1107, что меньше 1134. Противоречие. Значит обязательно есть тройка, в которой сумма чисел больше 41. Что и требовалось.
Объяснение:
3х(6-2х)+6 = 9(2х-4)
18х-6х²+6 = 18х-36
18х-6х²+6-18х+36 = 0
-6х²+42 = 0
-х²+7 = 0
-х² = -7
х² = 7
х = √7 и х = -√7
произведение корней
√7 * (-√7) = -7