Задание № 4:
Два бегуна одновременно стартовали из одного и того же места в одном направлении. Спустя 1 час, когда одному из них оставалось бежать 1км до промежуточного финиша, ему сообщили, что второй бегун миновал промежуточный финиш 5 минут назад. Найдите скорость второго бегуна, если известно, что скорость первого на 2 км/ч меньше скорости второго.
РЕШЕНИЕ: Пусть скорость второго бегуна х. Тогда скорость первого (х-2). s - длина до промежуточного финиша.
За час первый пробежал путь s-1=(x-2) (время в минутах).
За 55 минут второй пробежал пусть s=(55/60)x
Получаем:
(55/60)x-1=(x-2)
55x-60=60(x-2)
55x-60=60x-120
60=5x
х=12 км/ч
ОТВЕТ: 12 км/ч
Область определения:
4 - 2x - x^2 > 0
x^2 + 2x - 4 < 0
x^2 + 2x + 1 - 5 < 0
(x+1)^2 - (√5)^2 < 0
(x+1-√5)(x+1+√5) < 0
x ∈ (-1-√5; -1+√5)
Локальные экстремумы будут в точках, в которых производная равна 0.
Производная
x = -1 ∈ (-1-√5; -1+√5)
Знаменатель > 0, потому что скобка (4-2x-x^2) > 0, по области определения логарифма. Числитель -2(x+1)>0 при x<-1, значит, график возрастает, а при x>-1 график убывает. Значит, -1 точка максимума.
ответ: Наибольшее значение y(-1) = 4
2)
Область определения:
x^2 - 6x + 10 > 0
x^2 - 6x + 9 + 1 > 0
(x - 3)^2 + 1 > 0
Сумма квадрата и положительного числа положительна при любом x.
x ∈(-oo; +oo)
Локальные экстремумы будут в точках, в которых производная равна 0.
x = 3
Здесь все наоборот. Знаменатель тоже >0. Числитель 2(x-3)<0 при x<3 (график убывает) и 2(x-3)>0 при x>3 (график возрастает).
Значит, 3 - точка минимума.
ответ: Наименьшее значение y(3) = 2