М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Mrkeu
Mrkeu
05.12.2021 17:16 •  Алгебра

решить! не понимаю, как делать такие примеры, конец года подробное решение, чтобы я поняла, откуда и что взялось и как это решить. не надо решений из интернета, 40 за подробное и понятное решение{a+2}{a-2}-\frac{a}{a+2})*\frac{a-2}{3a+2}[/tex]

👇
Ответ:
Арина7405
Арина7405
05.12.2021

( \frac{a + 2}{a - 2} - \frac{a}{a + 2} ) \times \frac{a - 2}{3a + 2} = \frac{(a + 2) {}^{2} - a(a - 2)}{( a- 2)(a + 2)} \times \frac{a - 2}{3a + 2} = \frac{(a + 2) {}^{2} - a {}^{2} + 2a }{(a + 2)(3a + 2)} = \frac{ {a}^{2} + 4a + 4 - {a}^{2} + 2a }{(a + 2)(3a + 2) } = \frac{6a + 4}{(a + 2)(3a + 2)} = \frac{2(3a + 2)}{(a + 2)(3a + 2)} = \frac{a}{a + 2}

4,5(32 оценок)
Ответ:
Gatkek
Gatkek
05.12.2021

____________________

Готово!!Удачи)))


решить! не понимаю, как делать такие примеры, конец года подробное решение, чтобы я поняла, откуда и
4,7(2 оценок)
Открыть все ответы
Ответ:

1) Орг. момент.

2) Актуализация опорных знаний.

Определение. Линейным уравнением с двумя переменными называется уравнение вида

mx + ny = k, где m, n, k – числа, x, y – переменные.

Пример: 5x+2y=10

Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.

Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными.

1. 5x+2y=12 (2)y = -2.5x+6

Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y.

Пусть x = 2, y = -2.5•2+6 = 1

x = 4, y = -2.5•4+6 =- 4

Пары чисел (2;1); (4;-4) – решения уравнения (1).

Данное уравнение имеет бесконечно много решений.

3) Историческая справка

Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной.

В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику.

Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени.

4) Изучение нового материала.

Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y  Z k0

Утверждение 1.

Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений.

Пример: 34x – 17y = 3.

НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет.

Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно Утверждение 2.

Если m и n уравнения (1) взаимно числа, то это уравнение имеет по крайней мере одно решение.

Утверждение 3.

Если коэффициенты m и n уравнения (1) являются взаимно числами, то это уравнение имеет бесконечно много решений:

где (; ) – какое-либо решение уравнения (1), t Z

Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2)

m, n, x, y  Z

Утверждение 4.

Если m и n – взаимно числа, то всякое решение уравнения (2) имеет вид  

5) Домашнее задание. Решить уравнение в целых числах:

9x – 18y = 5

x + y= xy

Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?

Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором.

Урок 2.

1) Организационный момент

2) Проверка домашнего задания

1) 9x – 18y = 5

НОД (9;18)=9

5 не делится нацело на 9, в целых числах решений нет.

2) x + y= xy

Методом подбора можно найти решение

ответ: (0;0), (2;2)

4,8(38 оценок)
Ответ:
superogurec002
superogurec002
05.12.2021
{1;3;5;...;99} -множество нечётных чисел меньших 100
Сколько их?
а₁=1; a₂=3  => d=a₂-a₁=3-1=2
a(n)=99
a(n)=a₁+d(n-1)
1+2(n-1)=99
2(n-1)=98
n-1=49
n=50 - количество нечётных чисел меньших 100

{3;9;15;...;99} - множество нечётных чисел кратных числу 3 и меньших 100
Сколько их?
a₁=3, a₂=9 => d=a₂-a₁=9-3=6
a(m)=99
a(m)=a₁+d(m-1)
3+6(m-1)=99
6(m-1)=96
m-1=16
m=17 - количество нечётных чисел кратных числу 3 и меньших 100

{5;15;25;...;95} - множество нечётных чисел кратных числу 5 и меньших 100
а₁=5; а₂=15 => d=a₂-a₁=15-5=10
a(p)=a₁+d(p-1)
5+10(p-1)=95
10(p-1)=90
p-1=9
p=10 - количество нечётных чисел кратных числу 5 и меньших 100

Среди нечётных чисел кратных числам 3 и 5 одновременно встречаются числа 15; 45 и 75 (всего их 3)
Общее количество нечётных натуральных чисел, делящихся на 3 или на 5:
m+p-3=17+10-3=24

Количество нечётных натуральных чисел, которые не делятся ни на 3, ни на 5 равно:  50-24=26

ответ: 26
4,6(59 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ