Вчём суть чётности( нечётности) функции? есть правила: 1) если f(-x) = f(x) , то f(x) - чётная переводим на простой язык: если вместо "х" подставить "-х" и функция при этом не изменилась, то она ( собака серая) чётная. 2) если f(-x) = - f(x) , то f(x) - нечётная переводим на простой язык: если вместо "х" подставить "-х" и функция при этом поменяла знак, то она ( собака серая) нечётная. наш пример: f(x) = x⁴ + 0,5x³ f(-x) = (-x)⁴ + 0,5*(-x)³ = x⁴ - 0,5x³ ≠ f(x) ≠ -f(x) вывод: данная функция ни чётная, ни нечётная.
1)x^2-6x+11=0 D=36-44=-8 так как дискриминат меньше 0, то график этого трехчлена - парабола, не пересекает ось ох, и так как коэффицент перед x^2 положительный, то вся парабола будет распологатся выше оси ox, и следовательно принимать только неотрицательные значения. 2)-x^2+6x-11=0 D=36-4*(-11)*(-1)=36-44=-8 здесь также дискриминат меньше 0, но коэффицент перед x^2 отрицательный, поэтому парабола будет располагаться ниже оси ox и следовательно принимать только отрицательные значения (В приложении графики парабол, для наглядности. красным цветом - 1 парабола, синим - 2 )
Объяснение:
как это
отдельно