М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
merimargaryan
merimargaryan
25.12.2021 10:46 •  Алгебра

(sin12*cos24*sin36*cos48)\(sin42*cos54*sin66*cos78)

👇
Ответ:
kato99
kato99
25.12.2021

\frac{sin12^o*cos24^o*sin36^o*cos48^o}{sin42^o*cos54^o*sin66^o*cos78^o}=\frac{sin12^o*cos24^o*sin(90^o-54^o)*cos(90^o-42^o)}{sin42^o*cos54^o*sin(90^o-24^o)*cos(90^o-12^o)}=\\ =\frac{sin12^o*cos24^o*cos54^o*sin42^o}{sin42^o*cos54^o*cos24^o*sin12^o}=1

4,6(25 оценок)
Открыть все ответы
Ответ:
okotletacot
okotletacot
25.12.2021
Сначала ОДЗ
Система из 4 выражений:
{x^2 - 4x + 5 > 0;         {D < 0; x ∈R
x^2 - 4x + 5 ≠1;            x^2 - 4 x + 4 ≠ 0;          x ≠ 2;                  
3x^2 + 4x + 1 >0;         3(x+1)(x+1/3) > 0;      x < - 1   U   x > - 1/3;   
4x^2 + 1 >0;                   x∈R;                      
После пересечения всех условий получаем ОДЗ     х ∈ (- ∞; - 1) U (- 1/3; 2) U(2; + ∞)
Теперь само решение.
После того, как квадрат степени в основании логарифма вынесем вперед как 1/2 и сократим его с 2, стоящей перед логарифмов, выражение приведется к такому виду:
log(x^2- 4x +5) _(4x^2 +1) ≤ log(x^2 - 4x+5)_(3x^2 + 4x + 1).
Видно, что в основании одно и то же выражение слева и справа.

 Воспользуемся условием равносильности знаков.
loga_b ≤ loga_c; ⇔ (a -1) *(b - c) ≤ 0 при a>0; a≠1; b>0; c>0.

(x^2 - 4 x + 5  - 1) *(4x^2 + 1 - 3x^2 - 4x - 1) ≤ 0;
(x^2 - 4x + 4) *(x^2 - 4x) ≤ 0;
(x-2)^2 * x * (x-4) ≤ 0;
Получили 3 корня,х = 2; х = 0; x = 4.    Hо х = 2 - это корень четной степени, и при переходе через него знак неравенства не меняется. Используем метод интервалов.
     +                     --          четн     --                 +
[0][2][4] x

Видно, что неравенство выполняется при  х∈ [0; 4].
Теперь пересекаем с ОДЗ и получаем ответ 
х ∈[0; 2) U (2; 4]
4,4(77 оценок)
Ответ:
sergey1234567891011
sergey1234567891011
25.12.2021

Объяснение:

0\hfill\\x-3>0\hfill\\x-3\ne1\hfill\\\end{gathered}\right.\Leftrightarrow\left\{\begin{gathered}x>-1\hfill\\x>3\hfill\\x\ne4\hfill\\\end{gathered}\right.\hfill\\\boxed{x\in(3;+\infty)}\hfill\\\end{gathered}\]" class="latex-formula" id="TexFormula2" src="https://tex.z-dn.net/?f=%5C%5B%5Cbegin%7Bgathered%7D2%29%5C%3B%5C%3B%7B%5Clog_%7Bx-3%7D%7D%28x%2B1%29%5Chfill%5C%5C%5Cleft%5C%7B%5Cbegin%7Bgathered%7Dx%2B1%3E0%5Chfill%5C%5Cx-3%3E0%5Chfill%5C%5Cx-3%5Cne1%5Chfill%5C%5C%5Cend%7Bgathered%7D%5Cright.%5CLeftrightarrow%5Cleft%5C%7B%5Cbegin%7Bgathered%7Dx%3E-1%5Chfill%5C%5Cx%3E3%5Chfill%5C%5Cx%5Cne4%5Chfill%5C%5C%5Cend%7Bgathered%7D%5Cright.%5Chfill%5C%5C%5Cboxed%7Bx%5Cin%283%3B%2B%5Cinfty%29%7D%5Chfill%5C%5C%5Cend%7Bgathered%7D%5C%5D" title="\[\begin{gathered}2)\;\;{\log_{x-3}}(x+1)\hfill\\\left\{\begin{gathered}x+1>0\hfill\\x-3>0\hfill\\x-3\ne1\hfill\\\end{gathered}\right.\Leftrightarrow\left\{\begin{gathered}x>-1\hfill\\x>3\hfill\\x\ne4\hfill\\\end{gathered}\right.\hfill\\\boxed{x\in(3;+\infty)}\hfill\\\end{gathered}\]">

4,7(14 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ