Вот Расположим обе наклонных в одной вертикальной плоскости, для удобства построения.Точку из которой проведены наклонные обозначим К. Опустим из К перпендикуляр на плоскость до пересечения в точке С. Для удобства примем КС параллельно оси Y. Из точки С проводим горизонталь АС. Угол АСК прямой. АС=4,5, ВС=1,5. Обозначим КАС=а, тогда из условия КВС=2а. По известной формуле tg2а=2tgа/(1-tgа квадрат). КС=АСtgа=4,5 tgа. Из второго треугольника КС=ВСtg2а=(1,5 на 2tgа)/(1-tgа квадрат). Отсюда tgа=0,578. Угол а=30. Тогда искомые длины наклонных АК=АС/cosа=5,2 ВК=ВС/cos2а=3.
(x+2)^2=43-6x
x^2+4x+4-43+6x=0
x^2+10x-39=0
D=10^2-4*1*(-39)=100+156=256
x1=(16-10)/2=6/2=3
x2=(-16-10)/2=-26/2=-13
(-13+3)/2=-5