1) если подмодульное выражение неотрицательно, то модуль этого выражения равен самому выражению.
|x-3|-3≥0 Уравнение примет вид: |x-3|-3=3-|3-х| или 2|x-3|=6 (|x-3|=|3-х|- модули противоположных выражений равны) |x-3|=3 х-3=3 или х-3=-3 х=6 или х=0 х=6 и х=0 являются корнями уравнения, так как удовлетворяют неравенству |x-3|-3≥0
2) |x-3|-3<0
Уравнение примет вид: -|x-3|+3=3-|3-х| или |x-3|=|3-х| - равенство верно при любом х. Корнем уравнения являются те х, которые удовлетворяют неравенству |x-3|-3<0 или |x-3|<3 -3<x-3<3 0<x<6
По формуле классической вероятности: p=m/n n=90 ( количество двузначных чисел)
Числа делящиеся на 3: 12; 15;... 99 - таких чисел 30 Можно найти их количество по формуле n-го члена арифметической прогрессии a₁=12 d=15-12=3 99=12+3·(n-1) ⇒87=3(n-1) n-1=29 n=30
Числа делящиеся на 5: 10; 15;20; 25; 30;...; 95 - таких чисел 30 Можно найти их количество по формуле n-го члена арифметической прогрессии a₁=10 d=15-10=5 95=10+5·(n-1) ⇒85=5(n-1) n-1=19 n=20
Чисел, которые одновременно делятся и на 3 и на 5 всего 6: 15;30;45;60;75 и 90
Если Вам нужен только ответ, то вот он:
х=2pi*n, n-все целые числа