1) 1:5 - это масштаб уменьшения,т.е. если длина детали 2,1 см, то ее реальная длина будет равна 5*2,1 = 10,5 см
3:1 - это масштаб увеличения, т.е. если реальная длина равна 10,5 см, то длина детали в этом масштабе будет равна 3*10,5 = 31,5 см
2) а - сторона квадрата
d - диаметр окружности
r - радиус окружности
т.к. а = d, то r = a/2 = 4/2 = 2cм
Sфигуры = Sквадрата + 2Sполуокружностей = Sквадрата + Sокружности = a^2 + Пr^2 =
= 4^2 + 3,14*2^2 = 28,56 см^2
Pфигуры = 2Lполуокружностей + 2стороны квадрата = Lокружности + 2a = 2Пr + 2a =
= 2*3,14*2 + 2*4 = 20,56 см
3) x - число туристов, y - число автобусов
"Группу туристов можно рассадить в 40-местные автобусы так, что в автобусах свободных мест не останется":
x = 40y
"В связи с тем, что вместо 40-местных были поданы 34-местные автобусы, пришлось заказать на два автобуса больше. При этом в одном из автобусов 14 мест оказались свободными.":
x = 34(y + 2) - 14
40y = 34(y + 2) - 14
40y = 34y + 68 - 14
6y = 54
y = 9 - автобусов
х = 40*9 = 360 туристов
1
(x+3)^2 * (x-2) < 0
произведение меньше 0, если множители имеют разные знаки + и -
множитель (x+3)^2 = 0 =>(x+3)^2 * (x-2) = 0 если х= -3
исключаем х= -3 , так как по условию произведение меньше 0
при любых остальных х множитель (x+3)^2 - имеет положительное значение
значит множитель (x-2) должен иметь отрицательное значение
(x-2) < 0 при х < 2 , кроме х= -3
ответ x Є (-∞; -3) U (-3; 2)
2
1\ √(5x-2)
имеет смысл, если подкоренное выражение положительное значение или 0
5x-2 ≥ 0 ; x ≥ 2/5
x =2/5 придется исключить, т.к. на 0 делить нельзя
ответ x Є (2/5; +∞)
3
√ (x^2+6x )
имеет смысл, если подкоренное выражение положительное значение или 0
x^2+6x ≥ 0 ; x *(x+6) ≥ 0
произведение ,больше 0, если множители имеют одинаковые знаки + и -
произведение ,равно 0, если один из множителей равен 0
тогда
{ x ≥ 0
{ (x+6) ≥ 0 ; x ≥ -6
решение системы x ≥ 0
или
{ x ≤ 0
{ (x+6) ≤ 0 ; x ≤ - 6
решение системы x ≤ -6
ответ x Є (-∞; -6] U [0; +∞)