1. поработаем со знаменателем первой дроби. это формула сокращенного умножения. (х+2)(х-2)- будет являться общим знаменателем.
2. 3 переносим в левую часть, поменяв знак на противоложный, тк переносим через =. подгоним все под общий знаменатель и получим:
4-(х+2)-3(х²-4)\(х-2)(х+2)=0
3. дробь равна 0, когда числитель равен 0, а знаменатель не равен. потому знаменатель отбрасываем. НО. делить на 0 нельзя, поэтому нельзя, чтобы в знаменателе получился 0. х не равно +-2. получим:
4-(х+2)-3(х²-4)=0
4. раскроем скобки. если перед скобкой стоит -, то все знаки меняются на противоположные, а скобки убираются. если перед скобкой стоит умножение, то нужно член, стоящий перед скобкой, умножить на каждый член в скобки и скобки уберутся. получим
4-х-2-3х²+12=0
5. приведем подобные и получим:
-3х²-х+14=0
для удобства умножим все на -1 ( не обязательно):
3х²+х-14=0
6.D= в²-4ас
D= 1+168=169=13²
х1=-1+13\6=2
х2= -1-13\6= -7\3
ответ: -7\3, 2
1.) Используем теорему Виета для приведенного уравнения:
x² + px + q = 0
Теорема Виета:
x¹ + x² = -p
x¹ * x² = q
(это не степени, а цифра (число) корня)
У нас дано уже два корня:
х¹ = 2
х² = 3
2.) Подставляем корни в теорему Виета:
2 + 3 = 5
2 * 3 = 6
-p = 5
q = 6
3.) Теперь нужно из данных коэффициентов составить уравнение.
Так как мы видим, что сумма двух Х даёт нам противоположное число коэффициента в уравнении, мы должны поменять знак этого числа на противоположный, если хотим составить уравнение. Это значит, что если:
- p = 5, то
p = -5
q = 6
4.) Составляем уравнение:
x² + px + q = 0
x² + (-5)x + 6 = 0
x² - 5x + 6 = 0
ответ: x² - 5x + 6 = 0