(1-sin^2 x)-3sinx-(cos^2 x - sin^2 x) - 4=0 1-sin^2 x - 3sinx - 1+sin^2 x + sin^2 x - 4= 0 sin^2 x - 3sinx - 4=0 можешь дальше через дискриминант, но здесь и формула a+b+c=0 подходит, поэтому sinx =-1; x=-(π/2)+2πn, n€Z; sinx=-4(нет корней) Уравнение имеет одно решение: x=-(π/2)+2πn, n€Z [-π;π] -π≤ -π/2 + 2πn≤π, n€Z нам необходимо, чтобы по середине остался линии ь n, тогда, во-первых надо избавиться от -π/2, значит к обеим частям прибавляем -π/2, т.е. получится: -π+π/2≤-π/2 + π/2 + 2πn≤π + π/2 -π/2≤2πn≤3π/2. во-вторых, избавимся от 2π, т.е. делим на 2π обе части, получается -1/4≤n≤3/4, n - это какие то целые числа, смотришь, какие целые цисла есть между -1/4 и 3/4, но надо подобрать так, чтобы принадлежало нашему промежутку есть два таких числа это 0 и 1, проверим, подставив в x=-(π/2)+2πn, n€Z Если n=0, то х=-π/2 €[-π/2;π], т.е. подходит Если n=1, то х=-5π/2 это не принадлежит, поэтому промежутку [-π/2;π] принадлежит х=-π/2 Думаю, не ошибся
Объяснение:
A1.
a) (5a+10)/(b-7):(a²+4a+4)/2b-14=(5(a+2)/(b-7) * ((2(b-7))/(a²+4a+4)=
=(5(a+2)2(b-7))/((b-7)(a+2)²)=5*2/(a+2)=10/(a+2)
a²+4a+4=0; D=16-4*1*4=0
a₁=a₂=0,5(-4±√0)= -2
a²+4a+4=(a+2)(a+2)=(a+2)²;
б) (√50-√6)/√12=(√(25*2)-√(3*2))/(√3*2*2)=(5√2-√(3*2))/(√3*2*2)=
=(5-√3)/√6=(√6(5-√3)/6=(5√(3*2)-√(3*3*2))/6=(5√6-3√2)/6.
A2.
а) (√2)⁶/32=(2¹⁽²)⁶/2⁵=2³/2⁵=2³⁻⁵=2⁻²=1/2²=1/4;
б) (5,2*10⁻⁷)(3,5*10⁴)=5,2*3,5*10⁻⁷⁺⁴=18,2*10⁻³=1/(18,2*10³);
в) 3⁻⁶*9⁻²/(3⁻¹²)=3⁻⁶*(3²)⁻²/3⁻¹²=3⁻⁶*3⁻⁴/3⁻¹²=3⁻¹⁰/3⁻¹²=3⁻¹⁰⁻⁽⁻¹²⁾=3⁻¹⁰⁺¹²=3²=
=9.
А3.
x²+2x=16x-49;
x²+2x-16x+49=0;
x²-14x+49=0;
x²-2*7x+7²=0;
(x-7)²=0;
x₁=x₂=7.
B1.
x³-3x²-4x+12=0;
(x³-3x²)-(4x-12)=0;
x²(x-3)-4(x-3)=0;
(x-3)(x²-4)=0;
x-3=0; x=3;
x²-4=0; x²=4; x=±√4; x=±2;
x₁=-2; x₂=2; x₃=3