Решение: Обозначим стоимость изделий типа Б за (х) руб, тогда стоимость изделий типа А составит (2х) руб Проверим какое количество изделий типа А и типа Б должен выпускать цех, чтобы общая стоимость продукции была наибольшей. ответ А.- 100 и 50- невозможен, т.к. цех может изготавливать за сутки 100 изделий типа А или 300 изделий типа Б ответ Б. 75 и 75 75*2х+75*х=150х+75х=225х (руб) -продукции ответ В. 50 и100 50*2х+100*х=100х+100х=200х (руб) -продукции Отсюда можно сделать вывод, что цеху нужно выпускать продукции: 75 изделий типа А и 75 изделий типа Б, чтобы общая стоимость продукции была наибольшей (225х руб)
График - парабола, ветви вниз, для построения требуются доп точки. Чертим координатную плоскость, подписываем оси и отмечаем положительное направление стрелками: вправо по оси х и вверх по оси у. Отмечаем центр – точку О и единичные отрезки по обеим осям в 1 клетку. Далее заполняем таблицу: Х= 0 -2 У= 3 3
Отмечаем вершину, нули и доп точки из таблицы в системе координат, соединяем их. Подписываем график. Всё!
(x + 2)⁴ - 5(x + 2)² + 4 = 0
замена : (х+2)² = t
t² - 5t + 4 = 0
D = (-5)² - 4*1*4 = 25 - 16 = 9 = 3²
D> 0 - два корня уравнения
t₁= (- (-5) - 3)/(2*1) = (5-3)/2 = 2/2= 1
t₂= (-(-5) + 3)/(2*1) = (5+3)/2 = 8/2= 4
(x + 2)² = 1
x² + 2*x*2 + 2² = 1
x² + 4x + 4 - 1 =0
x² + 4x + 3 = 0
D = 4² -4*1*3 = 16 - 12 = 4 = 2²
D>0 - два корня уравнения
х₁ = (-4 - 2)/(2*1) = -6/2 = - 3
х₂ = (-4+2)/(2*1) = -2/2 = - 1
(х + 2)² = 4
х² + 4х + 4 - 4 =0
х² + 4х = 0
х(х + 4) = 0
произведение = 0, если один из множителей = 0
х₁ = 0
х + 4 =0
х₂ = -4
ответ : х₁= - 4 ; х₂ = - 3 ; х₃ = - 1 ; х₄ = 0.
Объяснение:
Дай лутший