Пусть A1 — центр вписанной окружности ∆ SBC, B1 — центр вписанной окружности ∆ SAC, AA1 пересекается с A, A1, B1, B лежат в одной плоскости, значит прямые AB1 и BA1 пересекаются на ребре SC. Пусть точка пересечения этих прямых — p. Так как Ap и Bp — биссектрисы углов A и B, то . Но тогда AC • BS = BC • AS, отсюда , следовательно биссектрисы углов S в ∆ ASB и C в ∆ ACB пересекаются на ребре AB, т.е. точки S, C и центры вписанных окружностей ∆ ASB и ∆ ACB лежат в одной плоскости. Отсюда следует, что отрезки, соединяющие вершины S и C с центрами вписанных окружностей противолежащих граней, пересекаются.
Выиграет первый. Покажем его план действий.
Первым ходом он отодвинет фишку в самый конец, тем самым сходив на 50 клеток. Затем каждый следующий ход он будет возвращать фишку обратно на последнюю клетку. Более того, длины его ходов никогда не повторятся - докажем это. Предположим обратное - пусть он повторит длину хода. Тогда он сходит из места, в которое ранее сходил второй игрок. Однако он сходил туда из позиции 50, то есть он сам повторил длину хода. Противоречие. Итак, так как длина ходов когда нибудь повторится, а это будет не случай первого, то второй проиграет.
2 и 3 попробуй реши сам, уравнения легкие